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ABSTRACT: To identify the low energy pathway for solid-to-solid phase transition has been a great challenge in physics and
material science. This work develops a new theoretical method, namely, variable-cell double-ended surface walking (VC-DESW)
to locate the transition state (TS) and deduce the pathway in solid phase transition. Inherited from the DESW method (J. Chem.
Theory Comput. 2013, 9, 5745) for molecular systems, the VC-DESW method implements an efficient mechanism to couple the
lattice and atom degrees of freedom. The method features with fast pseudopathway building and accurate TS location for solid
phase transition systems without requiring expensive Hessian computation and iterative pathway optimization. A generalized
coordinate, consisting of the lattice vectors and the scaled atomic coordinates, is designed for describing the crystal potential
energy surface (PES), which is able to capture the anisotropic behavior in phase transition. By comparing with the existing
method for solid phase transition in different systems, we show that the VC-DESW method can be much more efficient for
finding the TS in crystal phase transition. With the combination of the recently developed unbiased stochastic surface walking
pathway sampling method, the VC-DESW is further utilized to resolve the lowest energy pathway of SiO2 α-quartz to quartz-II
phase transition from many likely reaction pathways. These new methods provide a powerful platform for understanding and
predicting the solid phase transition mechanism and kinetics.

1. INTRODUCTION

Solid phase transition is an important phenomenon in nature.
Being different from reactions in a finite system, e.g., molecules
and clusters, solid phase transition is much more complex,
involving collective atom movement together with the change
of crystal lattice (e.g., graphite to diamond). To identify the
solid transition pathway and resolve the mechanism have long
been huge challenges with regard to both theory and
experiment. From a theoretical point of view, there are two
fundamental difficulties in exploring the potential energy
surface (PES) of a solid. First, the reaction barrier in solid
phase transition can be very high as a number of chemical
bonds form/break simultaneously from one crystal phase to
another. Second, the reaction coordinate in the phase transition
is generally nonintuitive and hard to guess a priori. The
traditional finite-temperature molecular dynamics (MD)

methods and single-ended transition state (TS) searching
methods1,2 are thus not applicable for solid phase transition.
The crystal phase transition can be simplified as a

homogeneous phase transition, which could mimic the reaction
at certain high pressure limits or at the initial nucleation stage.
This is shown schematically in Figure 1a, where the lattices and
atoms displace from a crystal structure of one phase to another
crystal structure of a new phase. The key question for solid
phase transition is thus how to identify the lowest energy
pathway, where the lattice and atom correspondence between
phases can be established to understand the phase transition
mechanism and kinetics.
Traditionally, solid phase transition was often analyzed using

the phenomenological Landau-type theory in combination with
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group theory,4 which, however, lacks atomic detail of the phase
transition. With the advent of computational simulation, in the
past decades many elegant atomistic simulation methods have
been developed to treat solid phase transition. The Parrinello−
Rahman MD (PR-MD) simulation at the NpT ensemble is able
to explore crystal phase space at finite temperature and
pressure.5,6 The method was applied to reveal the phase
transition pathway in simple crystal systems, such as AgI7 and
Si.8 The rate of phase transition can be analyzed using
transition path sampling.9−11 For crystal phase transition with
high barriers, the PR-MD method is, however, not efficient for
the exponential dependence of the rate on the barrier. To
overcome this shortcoming, the biased MD simulation method,
metadynamics,12−14 was developed to explore the phase
transition pathways. By filling Gaussian bias potentials on all
lattice degrees of freedom, metadynamics is able to drive phase
transition, and the method has been applied to some important
systems, such as SiO2,

13 MgSiO3,
15 and CO2.

16 However,
because the method lacks of an efficient mechanism to couple
the lattice and atom movement, it is generally not applicable in
systems involving a complex pattern of atomic movement that
is not explicitly driven by the lattice deformation (e.g., the
phase transition with large changes on atomic coordinates but
only small changes in lattice coordinates).
Compared to the MD based approaches, the TS searching

method is less computationally demanding, which, however,
requires additional knowledge of the reaction coordinate. For
solid states, the reaction coordinate is not intuitive due to the
many possible representations of the crystal lattice. This is
different from the molecular reaction where TS-location
approaches were widely utilized even under complex reaction
conditions, e.g., those in heterogeneous catalysis.17,18 To
capture the reaction coordinate in solid phase transition, it
has to assume an initial (IS) and a final state (FS) of crystal
phases. Only with this IS/FS pair, the double-ended TS
location method can be utilized to locate the TS and the
pathway. Since there are apparently many possible combina-

tions of IS/FS pairs for a crystal phase transition, a trial-and-
error approach has to be taken to search for a number of likely
pathways in order to identify the lowest energy pathway.
The double-ended TS location method for crystal phase

transition has been available only recently and is still in
development. On the basis of the nudged-elastic-band (NEB)
method, Trinkle et al.19 developed a stepwise TS searching
method to study the transition metal Ti α-to-ω phase
transition. In their method, the conventional NEB was
performed to treat only atomic coordinates, and additional
optimization steps were utilized to relax the lattice parameters
in response to the induced stress.19,20 Caspersen and Carter
developed a lattice-version NEB method, named solid state
NEB (SSNEB), with the NEB spring applied only on the lattice
coordinate,21 while the atomic fractional coordinate is fixed in
SSNEB pathway iterations. More recently, Sheppard et al.22

developed the generalized SSNEB (G-SSNEB) method by
introducing an isotropic scaling parameter to couple the atomic
and lattice degrees of freedom, where the Cartesian coordinate
and the lattice strain are combined to describe the PES. G-
SSNEB was shown to identify a lower energy pathway for CdSe
crystal phase transition22 compared to the SSNEB method
provided with the same IS and FS.
Recently, we developed an automated approach to identify

the low energy pathway of molecular reactions based on
stochastic surface walking (SSW)23,24 pathway sampling and
the double-ended surface walking (DESW) TS location.3 The
SSW sampling explores the likely pathways on PES starting
from one reactant and produces a database of reactant and
product pairs (IS/FS pairs). The subsequent location of the TS
linking these IS/FS pairs would allow the finding of the lowest
energy pathways. Not limited to molecular systems, this new
pathway sampling method can be extended to study crystal
phase transition as demonstrated recently in a number of crystal
systems24−26 including ZrO2 tetragonal phase to monoclinic
phase.26 While the SSW pathway sampling for the crystal
method has been reported and benchmarked in detail,24 here
we will present the detailed algorithm of the variable-cell
DESW method (VC-DESW), which is designed to quickly
locate the TS of crystal phase transition.
Developed upon the DESW method, the VC-DESW method

is able to establish a pseudopathway linking two crystal phases
with varied lattice parameters and then locate the TS accurately
using the pseudopathway information. The method designs a
generalized coordinate for describing the crystal PES, which
consists of the lattice vectors and the scaled atomic coordinates.
We show that this generalized coordinate system is able to
produce soft modes containing both lattice and atom degrees of
freedom and thus efficiently couple the lattice displacement and
the atom movement in solid phase transition. We apply the
VC-DESW method to several example systems with complex
phase transition pathways, and the high efficiency of the
method is demonstrated by comparing in detail with the
existing methods.

2. METHODS

2.1. Overview of the DESW Algorithm. In order to
elaborate the VC-DESW method, we first introduce briefly the
main framework of the DESW method. The DESW method is
targeted to quickly locate the TS of molecular reactions.3 The
DESW method includes two main parts, i.e., pseudopathway
building and TS location.

Figure 1. (a) Illustration of the homogeneous crystal phase transition
reaction that can be decomposed into two steps: (i) crystal rotation
and (ii) crystal deformation including both lattice and atom
displacements. (b) 1-D scheme of the DESW method in building
the pseudopathway (also see ref 3).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00641
J. Chem. Theory Comput. 2015, 11, 4885−4894

4886

http://dx.doi.org/10.1021/acs.jctc.5b00641


2.1.1. Pseudopathway Building. The central part of the
DESW method is to quickly build a pseudopathway linking IS
and FS. As illustrated in Figure 1b, the algorithm defines two
structure images, R and P, initiating from the IS and the FS
basins, which walk toward each other on the PES. “Surface
walking” is carried out by repeated Gaussian function addition
and local relaxation. R0

i and P0
i are the structure images on the

pseudopathway obtained after each local optimization, where
the superscript i indicates the sequence of the images counting
from each side. The two sides will eventually meet with each
other (measured by the distance d in Figure 1b), which
establishes a psudopathway connecting IS with FS.
The walking direction is critical in DESW method. The initial

walking directions at R0
i (or P0

i) are updated dynamically as
the two sides get close to each other, as given by the coordinate
difference vector in eq 1. Obviously, the direction always points
toward each other.

=
−

|| − ||
=

−
|| − ||

+

+N
P R
P R

N
R P
R P

;i
init R

i i

i i i
init P

i i

i i
, 0 0

0 0

, 0
1

0

0
1

0 (1)

These initial directions will be further refined/optimized
using the (un)biased rotation of the constrained-Broyden dimer
rotation (CBD) method,27 and at convergence, Ni

init,R (or
Ni

init,P) is optimized to Ni
R (or Ni

P). The optimized Ni should
be close to or equal to one eigenvector of the Hessian matrix,
being a good approximation to the reaction coordinate. In this
way, the walking direction is adaptive to the shape of PES.
With Ni being determined, the DESW method translates the

structure image from R0
i to Rt

i by adding a new Gaussian
centering at R0

i and performs the local relaxation to yield R0
i+1.

The real PES (Vreal at Rt
i) is modified by adding a bias potential

VG as eq 2. The VG is a summation of all previously added
Gaussians, as shown in eq 3. The Ni defines the direction where
the Gaussian potential will be added, which is to prevent Rt

i

falling back to the minimum basins during the structure
translation uphill toward TS region. Each Gaussian function has
two parameters, the height wi and the width ds. The Gaussian
height is automatically adjusted during pathway building,
whereas the Gaussian width is left as an input parameter,
being set as 0.2 Å by default.
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2.1.2. TS Location. Starting from the highest energy
structure image (i.e., P0

m as illustrated in Figure 1b) in the
pseudopathway, the single-ended TS location method can be
utilized to exactly locate the TS (this corresponds to the highest
energy TS if there are multiple TSs along the pathway). In
DESW, we utilize the CBD method,28 a modified version of the
dimer method,29,30 to locate the TS, which contains two
independent modules, namely, the dimer rotation and the
translation. The dimer rotation is carried out by the numerical
constrained Broyden dimer rotation method, which can identify
the reaction coordinate, e.g., an associated eigenvector of
Hessian matrix with the negative eigenvalue. It is then possible
to translate the structure gradually toward the TS along the
reaction coordinate using a Quasi-Newton Broyden method.
The translation force Ft is obtained from eq 4 by modifying the
total force F, where the force component along the reaction

coordinate (Fp) is reversed in direction; a tunable factor λ(λ ∈
(1,2)) controls the step size of the translation.

λ λ= − = − ·F F F F F N N( )t p (4)

2.2. Algorithm of the VC-DESW Method. The basic
framework of the VC-DESW remains the same as that of the
DESW: both contain the same modules, the pseudopathway
building and the TS location. Below we focus on the new
features added in the VC-DESW implementation, which are
related to the lattice degrees of freedom. The generalized
coordinate that includes both lattice and atom degrees of
freedom is first introduced and derived. It is then followed by
the algorithm to identify the reaction coordinate in crystal
phase transition. The comparison between VC-DESW with G-
SSNEB is also detailed at the end of this section.

2.2.1. Generalized Coordinate. For a periodic crystal with n
atoms per unit cell, the total degrees of freedom are 3n + 3,
including six degrees of freedom of the lattice and 3n − 3
degrees of freedom of the atom. From one crystal phase to
another, the TS corresponds to the first-order saddle point (all
the forces diminish at the TS with one and only one negative
normal mode) along the minimum energy pathway on the PES
spanned by the total 3n + 3 degrees of freedom. In order to
identify the TS, it is essential to construct a generalized
coordinate to describe the PES of the crystal, which should
have an efficient mechanism to couple the lattice and atom
degrees of freedoms.
For crystal, the fractional coordinate q of atoms can be

related to the Cartesian coordinate R and the lattice matrix L

= −q L R1
(5)

While either q or R can be a possible choice for atomic
coordinate, the fractional coordinate q is preferable as it is
rotationally invariant, a desired property when matching two
crystal structures. The potential energy of the system is then
described by the enthalpy H, a function of the lattice vector L
and the fractional coordinate q.

=H f L q( , ) (6)

It is noted that the lattice vector L is in real distance units, e.g.,
in Å, but the fractional coordinate q is a relative quantity in
between 0 and 1. For the numerical stability in structure
optimization, it is essential to scale the fractional coordinate to
let its magnitude be compatible with the magnitude of L. This
can be treated using eqs 7−9.

=G L Lr
T

r (7)

=S G1/2 (8)

′ =q Sq (9)

Specifically, we consider a rotational invariant matrix G, the
metric tensor of a reference lattice Lr in eq 7 (the choice of Lr
will be described in eq 14), and define the square root of the
metric tensor as a scaling matrix, S. The metric tensor G was
suggested previously by Souza and Martins32 as a dynamic
variable for variable-cell MD. The S can be obtained by
Cholesky decomposition of G (eq 8). The fractional coordinate
can then be transformed to a new set of scaled coordinate, q′,
the magnitude of which is now compatible with the lattice
length. We therefore define the generalized coordinate Q as

= ′Q L q{ , } (10)
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Accordingly, the force acting on the generalized coordinate Q
can be written as

= ′F F F{ , }L q (11)

where Fq′ and FL can be derived as

= ∂
∂ ′

=′
−H

F
q

S L F( )q
T T1

(12)

σ= − ∂
∂

= −Ω − −H
pF

L
L[( )( ) ]L ext

T 1
(13)

The forces on the lattice vectors FL can be related to the stress
tensor σ of the lattice,21,24 where Ω is the volume of the lattice,
and pext is the external pressure.
As for the scaling matrix S, it must be predefined and kept as

constant in building the pseudopathway. While there are many
possible choice of S (or Lr and Gr; see eqs 7−10), e.g., Lr being
set as the L of the IS, we here define Gr (eq 14) to be the
geometrical average of the metric tensor G for IS (LIS) and the
FS lattice (LFS).

= +G G G( )/2r IS FS (14)

We found that this choice of Gr is efficient for many crystal
phase transition systems examined in the group25,33−35 (also
see section 3). The scaling matrix S and the generalized
coordinate Q can then be derived using eqs 9−10.
We would like to emphasize two properties of the scaled

fractional coordinate of atoms. First, the scaled coordinate is
invariant with respect to the lattice rotation. The lattice
rotation, although generally involved in the crystal phase
transition (see Figure 1a), has no effective contribution to the
energy profile of the pathway. By removing the lattice rotation
contribution, the Euclidean distance between the IS and FS can
be maximally minimized to achieve the best structure match,
which speeds up pathway building in the VC-DESW method.
Second, the scaled fractional coordinate can describe better

the coupling between the atom and lattice, leading to the soft
mode related to lattice displacement. We illustrate this using a
TiO2 crystal as illustrated in Figure 2a, which plots the energy

function as the change of a lattice vector of La length (along a
axis). The red curve represents the energy function where the
Cartesian coordinate is kept fixed during the change of La, while
the black curve is the one with the fractional coordinate being
fixed. The curvature corresponding to the lattice displacement,
C, can be thus visualized, which is the second derivative of
enthalpy H with respect to the length of La (eq 15).

= ∂
∂

C
H

La

2

2
(15)

We can see that the curvature is much smoother in the case of
the fractional coordinate, and consistently, the force vectors
acting on the atoms are distributed uniformly on atoms inside
the crystal lattice as shown in Figure 2b. This couples effectively
the lattice displacement with the atom movement inside the
crystal cell. By contrast, in the case of the Cartesian coordinate,
the change of the lattice vector affects mainly the atoms at the
edge of the cell, where the force vectors have the largest
distribution (see Figure 2c).

2.2.2. Reaction Coordinate. The VC-DESW method utilizes
the numerical CBD rotation method to identify the normal
mode that is associated with the reaction coordinate. In the
dimer rotation, two structural images, Q0 and Q1, are generated
with a fixed spacing dQ according to the forward finite
difference algorithm29 expressed in eqs 16−18. The dimer
length dQ is typically set as 0.01.

= + dQQ Q N1 0 (16)

= ′

= ′

Q L q

Q L q

{ , }

{ , }

0 0 0

1 1 1 (17)

= ′N N N{ , }L q (18)

The initial input of N is Ninit from eq 1, and the dimer
rotation can optimize N by minimizing the rotational force
acting on the dimer, which is the difference of the vertical force
Fv (eq 19) acting on the image Q1 and Q0.

= − − − ·F F F F F N N[( ) ]v 1 0 1 0 (19)

In the positive curvature region (near the minimum basins),
the (unbiased) dimer method tends to converge to the softest
normal mode in the system, which is generally not the reaction
coordinate we are interested in. To retain the reaction
information from Ninit, the biased CBD rotation method is
utilized instead at the minimum basins, which adds an extra
quadratic potential VN at Q1 (eqs 20−21). The force acting on
Q1 is thus modified as shown in eqs 22−23. The details of the
biased CBD method have been described previously.27

= +V V Vreal
N1 1 (20)

= − − · = − ·V
a a

dQQ Q N N N
2

[( ) ]
2

[ ( )]N init t init1 0
2 2

(21)

= −
∂
∂

= ·
V

a dQF
Q

N N N[ ( ) ]N
N t init init

1 (22)

= +F F Freal
N1 1 (23)

We noted that the efficiency is in fact similar for CBD
rotation for optimizing N with and without the lattice
components. This is due to the fact that the degrees of

Figure 2. Plot of potential energy vs lattice expansion along the a axis
of TiO2 anatase by either fixing the fractional coordinates (black
curve) or fixing the Cartesian coordinates of atoms (red curv). (b and
c) are the corresponding force vectors (green arrows) on atoms due to
lattice expansion. From the plot, it can be deduced that the curvature
with the fixed Cartesian coordinate (32.68 eV/Å2) is much larger than
that with the fixed fractional coordinate (11.17 eV/Å2). The
interaction in TiO2 is described by the Matsui-Akaogi empirical
potential.31
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freedom of the atom are generally much larger and dominate
the computational cost in the TS search.
2.2.3. Comparison between VC-DESW and G-SSNEB. It is

of interest to compare the VC-DESW method with the G-
SSNEB method with the algorithm. Both methods belong to
the double-ended TS location method and are targeted to
identify the TS of solid phase transition. The G-SSNEB is
originated from the NEB method, whereas the VC-DESW
method is based on the DESW method. We have shown
previously that the DESW method establishes only a
pseudopathway but that the NEB method can converge to
the minimum energy pathway (MEP) via iterative pathway
optimization. The DESW method is more efficient if we are
only interested in the TS. The obtained peudopathway in
DESW is not the MEP but generally gets close to the MEP at
the TS regions. These general differences are still valid when
comparing VC-DESW with G-SSNEB.
Apart from the above differences, we would like to emphasize

that the generalized coordinate utilized in the VC-DESW
method is distinct from that utilized in the G-SSNEB method.
In the G-SSNEB method, the generalized coordinate combines
the scaled lattice vector with the Cartesian coordinate of atom
(R). The reaction coordinate along the NEB pathway is defined
as

εΔ = ΔJR R{ , }tot (24)

where ε is the lattice strain, which is the percentage of the
lattice deformation from the initial lattice L to the new lattice
Lnew.

ε = · −‐L L L( )1 new
(25)

J is a Jacobian constant being constructed as a function of the
volume of a reference cell (Ω) and the number of atoms (n) in
the cell.

= ΩJ n1/3 1/6
(26)

By contrast, the reaction coordinate in the VC-DESW
method can be written as eq 27, the difference between a new
coordinate Q1 and an original coordinate Q0.

Δ = − = Δ Δ ′Q Q Q L q{ , }1 0 (27)

The reaction coordinate ΔQ can be transformed to the
expression similar to that defined in the G-SSNEB by
multiplying two matrixes, L and S−1, as follows.

εΔ = Δ Δ ′ ≈ Δ− − −LS Q LS L LS q L R{ , } { , }1 1 1
(28)

The above equation utilizes the approximation that S is equal to
L (since S is the square root of the matrix tensor Lr

TLr and Lr

can be set as L of IS). By comparing eq 28 with eq 24, we found
that the reaction coordinate in VC-DESW would be similar to
that in G-SSNEB if the L is replaced by the Jacobian J (in
multiplying the strain). Because L is a matrix, instead of a
constant, with varied lengths at different lattice vector
directions, the multiplication of L to the strain acts an
anisotropic scaling on different lattice vector directions. From
our examples shown below, we found that this anisotropic
scaling is essential to identify the normal mode composing of
both lattice and atom degrees of freedom that describes the
reaction coordinate of the crystal phase transition. However,
the anisotropic scaling could be less efficient for some long
supercell calculations as discussed previously.22 For VC-DESW,
we have tested the TS location performance in different
supercells and found that the cubic-like supercell generally
provides the better performance by up to 35% in pseudopath-
way building, and thus, the supercell with one dimension being
too long should be avoided in practice.

3. RESULTS AND DISCUSSION

3.1. Examples for TS Location. To illustrate the efficiency
of the VC-DESW method, we here examined two TiO2 solid
phase transition systems, namely, the TiO2-B (symmetry C2/m,
a = 6.48 Å, b = 3.75 Å, c = 12.16 Å, α = γ = 90°, β = 75.8°, and
Z = 4) to anatase (I41/amd, a = 3.77 Å, b = 3.77 Å, c = 9.57 Å,
α = β = γ = 90°, and Z = 4) transition and the TiO2-II (Pbnm, a
= 4.58 Å, b = 5.58 Å, c = 4.93 Å, α = β = γ = 90°, and Z = 4) to
rutile (P42/mnm, a = b = 4.65 Å, c = 2.96 Å, α = β = γ = 90°,
and Z = 2) transition. These TiO2 systems are important in
applications, for example, as photocatalysts for water splitting.
The partial phase transition can lead to the formation of
biphase junction, which is known to boost the photo-
activity.36,37 In our previous work, the lowest energy transition
pathway of these two TiO2 systems have been determined
based on the pathways from SSW crystal pathway sampling.24,34

In these lowest energy pathways, the IS/FS structures are
generally not the Bravais lattice of the corresponding crystal
phase, indicating that predicting the reaction coordinate is
difficult in complex phase transition systems. Here, we analyze
the efficiency of VC-DESW for finding the TS of crystal phase
transition, which is compared with that using the G-SSNEB
method.38 In both cases, the same IS/FS pair is utilized.
These two TiO2 systems are representatives of complex solid

phase transition with large displacements on both lattice and
atom coordinates. The Euclidean distance as calculated from
the generalized coordinate (eq 10) are 4.01 and 6.11 Å for the
two systems and thus much longer than the simple phase
transition of the metal system, e.g., from alpha-to-omega in
metal Ti (<2 Å). The TiO2-B-to-anatase pathway is a direct

Table 1. Results for Locating the Solid Phase Transition TS Using the VC-DESW Method and the G-SSNEB Methoda

VC-DESWb G-SSNEB methodd

system Natom dist. (Å) Ea (Ea
est) (eV) Npath NCBD Ntot

c Nimg NF‑img Nall

TiO2-B-to-anatase 24 4.01 0.86 (0.96) 116 78 194(149) 5/10 44/38 220/380
rutile-to-TO2-II 48 6.11 3.66 (3.66) 199 27 228(346) 6/10 50/68 300/680

aThe listed data include the number of atoms per unit cell (Natom), the Euclidean distance measured by the generalized coordinate (dist.), and the
energy barrier (Ea). The estimated barrier (Ea

est) from the VC-DESW pseudopathway is also listed in parentheses together with the energy barrier for
comparison. bNpath and NCBD are the force and energy evaluation steps in the VC-DESW pathway building and CBD for TS location, respectively.
Ntot is the sum of Npath and NCBD.

cThe data in parentheses are the additional force/energy evaluation steps required to generate the reaction
pathway by extrapolating TS toward IS/FS. dTwo calculations with different NEB images (Nimg) have been tested in each example: 5 and 10 Nimg for
TiO2-B-to-anatase; 6 and 10 for rutile-to-TiO2-II. Data for the force and energy evaluation steps per image NF‑img and the overall force and energy
evaluation steps Nall are listed.
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transition pathway without an intermediate, and the unit cell in
the pathway contains 24 atoms (8 TiO2). The rutile-to-TiO2-II
pathway involves an intermediate structure (Baddeleyite, P21/
c) in the lowest energy pathway as discussed previously,24 and
we selected a large unit cell for this pathway, i.e., 48 atoms per
unit cell (16 TiO2).
All of the force and energy evaluations were performed using

a first-principles density functional theory (DFT) plane wave
method as implemented in the VASP package.39,40 The kinetic
energy cutoff utilized was 500 eV, and the ionic core electrons
were described using the projector augmented wave (PAW)
pseudopotential.41 The electron exchange and correlation
effects are described by the GGA-PBE functional.42 The first
Brillouin zone was sampled using the Monkhorst−Pack
scheme43 with a (4 × 4 × 4) for TiO2-B-to-anatase and a (2
× 2 × 2) for rutile-to-TO2-II phase transition systems. The
convergence criteria of force were set as 0.05 eV/Å for each
atomic degree of freedom, while that of the stress was 0.05 GPa
for TiO2-B-to-anatase and 0.15 GPa for rutile-to-TiO2-II.
In the VC-DESW, the Gaussian width utilized was set as 0.3

Å. In the G-SSNEB, we have tested different numbers of images
(Nimg in Table 1) along the NEB string to establish the
pathway, and the climbing image was employed to accurately
locate the TS. Calculations with a small number of NEB images
are usually able to quickly locate TS but may lose the pathway
resolution, while those with large NEB images can be utilized to
converge the reaction pathway close to the MEP. The spring
constant of the G-SSNEB method was 5.0 eV/Å. The structural
optimization of G-SSNEB was performed by the fast inertial
relaxation engine (FIRE) method44 with the maximum allowed
step size as 0.2 Å and the time step as 0.1.
Our main results are summarized in Table 1. Both the VC-

DESW and the G-SSNEB can locate accurately the correct TS
for these systems. From these selected examples, we show that,
if only we are only interested in the highest energy TS, then the
VC-DESW is more efficient than the G-SSNEB method by up
to 30% depending on the number of NEB images utilized in G-
SSNEB. In the following, we will elaborate these results by
analyzing the TS structure and the pathways from two
methods.
3.1.1. TiO2-B-to-Anatase Phase Transition. This phase

transition follows the diffusionless Martensitic phase transition
mechanism with a crystallographic orientation relationship,
(2̅01)B//(103)A and [010]B//[010]A,

25 which has been proved
by comparing the theoretical results with the experimental
HRTEM pictures.25 We have shown previously that the phase
transition initiates from the TiO2-B (2 ̅01) crystal plane
involving the collective layer-by-layer gliding along the [1 ̅02̅]
direction. The located TS together with the IS and the FS for

the TiO2-B-to-anatase phase transition is shown in Figure 3.
The phonon spectrum of the TS is shown in Supporting
Information, exhibiting one and only one imaginary eigenvalue
in the first Brillouin zone.
As shown in Table 1, the VC-DESW takes 194 energy and

force evaluation steps to locate the TS, while it requires 220−
380 steps (220 steps with 5 NEB images and 380 steps with 10
NEB images) in the G-SSNEB. (In practice, G-SSNEB can run
in parallel efficiently, e.g., each image on a number of nodes,
and the actual wall-clock time for each job depends on
computational resources.) To understand the procedure of VC-
DESW, we have plotted the VC-DESW trajectory and compare
it with the converged G-SSNEB pathways in Figure 4. The xy

plane of Figure 4 is constructed by the IS, TS, and FS, and the z
axis measures the deviation of the structure away from the IS−
TS−FS plane. The x/y unit vectors and the values in the z axis
are defined using eqs 29−31. This type of plot has been utilized
in the previous work for illustrating the reaction pathways.3

Figure 4 shows that the MEP (blue line) obtained from G-
SSNEB is curved, being far away from the linear interpolation
between the IS and FS (the blue dotted line). It takes 38
iterations in G-SSNEB (10 NEB images) to optimize the
pathway to the MEP. However, the pseudopathway obtained by
the VC-DESW method (red line) is close to the converged
MEP from G-SSNEB, although no iterative optimization of the
pathway is performed in VC-DESW. The maximal energy
position along the VC-DESW pathway (red circle) is close to
the true TS (blue circle). The estimated barrier is 0.96 eV,

Figure 3. IS, TS, and FS structures along the TiO2-B-to-anatase phase transition pathway. The atomic habit plane edges, TiO2-B (2 ̅01) and anatase
(103), are denoted by blue lines. The labeled Ti−Ti distance is in Å. Ti atom, gray ball; O atom, red ball.

Figure 4. VC-DESW trajectory (red line) together with the pathways
(blue) from the G-SSNEB method. Dotted blue line, the initial
pathway via the linear interpolation; blue line, the converged G-
SSNEB pathway after 68 iterations.
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being only 0.1 eV larger than the exact barrier, which indicates
that the pseudopathway of VC-DESW can provide a good
estimation to the reaction barrier. The subsequent single-ended
CBD method takes another 78 steps to finally converge to the
true TS.

= −
|| − ||

X
Q Q
Q Q

FS IS

FS IS (29)

= − − − ·
|| − − − · ||

Y
Q Q Q Q X
Q Q Q Q X X

[( ) X]
[( ) ]

TS IS TS IS

TS IS TS IS
(30)

= || − − − · − − · ||z Q Q Q Q X X Q Q Y Y( ) [( ) ] [( ) ]IS IS IS

(31)

We would like to emphasize that VC-DESW aims for quick
TS location and is not an ideal tool for finding the MEP, as also
discussed previously.3 The MEP can be retrieved rigorously, if
interested, using the obtained TS with alternative techniques,
such as intrinsic reaction pathway (IRC) using the Gonzalez−
Schlegel method45 and the Ishida−Morokuma−-Komornicki
method.46 This will, however, significantly increase the
computational cost. In practice, one can use the steep-
descendent and BFGS combined local optimization technique
to extrapolate the pathway starting from TS and confirm the TS
in between the IS and FS. Using this approach, we found that it
requires additional 149 force/energy evaluations to build the
whole pathway for TiO2-B-to-anatase phase transition and thus
the total force/energy evaluation step (343) is already similar to
that of the G-SSNEB method to converge the pathway close to
the MEP (Nimg = 10, 380 steps, Table 1).
3.1.2. Rutile-to-TO2-II Phase Transition. The reaction

energy profile for the rutile-to-TO2-II phase transition is
shown in Figure 5a, and the key structures involved in the
reaction are shown in Figure 5b. The phase transition obeys the
crystallographic orientation relationship (011)R//(001)II;
[100]R//[100]II.

25,35 There are appreciable movements on O
atoms in the phase transition. Both VC-DESW and G-SSNEB
identify an intermediate phase (Baddeleyite, P21/c, a = 4.87 Å,
b = 4.91 Å, c = 5.09 Å, α = γ = 90°, β = 100.4°, and Z = 4) and
therefore the pathway involves two elementary steps. The
rutile-to-Baddeleyite transition dictates the highest energy
position in the pathway. As shown in Table 1, the VC-DESW

takes 228 steps to locate the TS, whereas the G-SSNEB takes
300−680 steps in total (6 and 10 images) to find the TS.
By comparing the pathways from two methods (Figure 5a),

we found that the pseudopathway from VC-DESW mimics
closely the converged MEP from the G-SSNEB method. In
particular, the estimated barrier from the highest energy point
of the pseudopathway of VC-DESW is almost identical to the
exact barrier (<0.01 eV). Consistently, the dominant cost for
the TS location using the VC-DESW method is in pseudopath-
way building, 199 steps, and the CBD steps for TS location
only needs 27 steps.
If one is interested in the whole pathway including the

second TS along the pathway, the extrapolation from the TS to
the IS/FS must be carried out, and the second TS needs to be
searched similarly using VC-DESW. This will certainly require
additional force/energy evaluation steps. For the Rutile-to-
TO2-II phase transition, it takes an additional 346 steps in total,
including 221 steps for the extrapolation from two TSs and 125
steps for the location of the second TS using VC-DESW. In
fact, for the pathway sampling shown below, where the detailed
pathway information is not required in general, such computa-
tional efforts can be largely saved by using the VC-DESW
method.

3.2. Phase Transition of SiO2 from α-Quartz to the
Quartz-II Phase. Because the VC-DESW method is
particularly suitable for the fast assessment of the solid phase
transition barrier, it allows for a large-scale screening of the
solid phase transition pathways and the identification of the low
energy pathway when combining with the SSW crystal pathway
sampling method.24 Here, we chose silica (SiO2) as the model
system to illustrate the unique functionality of the SSW/VC-
DESW approach26 for resolving the solid phase transition
mechanism.
Silica is the abundant matter in the earth crust, and its phase

transition under high pressure has been of great scientific
interest.10 While silica has many different phases, the phase
transition from α-quartz to the quartz-II phase is one of the
most studied in both experiments and theory.47,48 It is known
that the phase transition occurs at 22 GPa at 300 K.48

Theoretically, although it has been studied using metadynamics
and Parrinello−Rahman methods,10,30−34,49 the detailed
mechanism and the reaction energetics remain uncertain.

Figure 5. Reaction profile from VC-DESW (red line) and G-SSNEB (blue line) together with the key structures. The blue lines in the structures
indicates the atomic habit plane edge, i.e., (011)R//(001)II. The labeled Ti−Ti distance is in Å. Ti atom, gray ball; O atom, red ball.
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Following previous theoretical work,13,24,47 we use the
Beest−Kramer−van Santen (BKS) potential50 to describe the
PES of silica, which has been shown to reproduce the structure
of α-quartz (P3121, a = b = 4.75 Å, c = 5.39 Å, α = β = 90°, γ =
120°, and Z = 3) and the quartz-II phase (C2, a = 8.68 Å, b =
3.41 Å, c = 5.51 Å, α = γ = 90°, β = 112.4°, and Z = 6) phase at
∼5 GPa by comparing with experimental and quantum
mechanics calculations.47 To demonstrate the ability of the
SSW/VC-DESW method for resolving the high barrier solid
phase transition reaction, we have performed the SSW reaction
pathway sampling at relatively low pressure conditions, i.e., 5
GPa. The pressure dependence of the phase transition is then
studied by changing the pressure of the lowest energy pathway.
In our simulation, we first utilize the SSW crystal pathway

sampling method to collect the likely pathways from α-quartz
to quartz-II at 5 GPa. The SSW crystal pathway sampling
method24 starts from the α-quartz phase and explores the likely
product phases nearby. All of the product phases that are
different from α-quartz will be recorded, which yields a
database of IS/FS pairs (IS is the α-quartz phase, and the FS is
the product phase). In this work, we collected 52 pathways that
take 8612 force/energy evaluation steps, and 26 of them are
related to the α-quartz to quartz-II transition. The SSW
simulation parameters utilized are the same as those used in the
previous work.24 Next, we utilize the VC-DESW method to
establish the pseudopathway for the 26 IS/FS pairs related to
the α-quartz to quartz-II transition and finally locate the TS of
these pathways.
All of the 26 pathways belong to the same lowest energy

pathway (with identical TS), and the calculated reaction barrier
is 0.65 eV per 36 atoms. Overall, it takes 20551 energy/force
evaluation steps to locate the TSs of all 26 reaction pathways
(on average, 790 steps for each TS with a stringent convergence
criterion, 0.005 eV/Å and 0.005 GPa for the maximum force on
atom and the stress, respectively; Table 2). In total, 29163

energy/force evaluation steps are required to resolve the lowest
energy pathway. We note that a significant amount of
computational time is spent on few high energy pathways
that have a long distance between IS and FS, which can in fact
be terminated early if extra screening conditions on the energy
barrier are applied.
Using metadynamics, Martoňaḱ et al. have identified a

reaction pathway for the phase transition, which requires 88
metasteps (each consisting of a 5 ps MD run). It should be
mentioned that due to the extra constraints applied on all six
degrees of freedom of the lattice in metadynamics, the pathway
observed from metadynamics is not exactly the same as our
identified lowest energy pathway.
Here, we describe briefly the mechanism of the α-quartz to

quartz-II transition based on the lowest energy pathway. The

snapshots of the pathway are displayed in Figure 6. We note
that the phase transition involves a large volume drop (28.6%,

from 421.36 Å3 to 301.30 Å3) with a maximal principal
compression along the [100] direction (a axis from 9.56 to6.81
Å). The lattice also experiences a large distortion with the α
angle from 90° to 69°. This indicates that the α-quartz to
quartz-II transition belongs to the reconstructive phase
transition instead of the diffusionless Martensitic phase
transition. In accordance with the large volume decrease, the
coordination number of Si changes appreciably: two-thirds of Si
atoms increases the coordination from 4-fold to 6-fold. As
shown in Figure 6a where one layer polyhedrons are labeled as
1−6, the 3−6 polyhedrons transform from 4-fold to 6-fold
coordination with edge sharing. The remaining 4-fold Si also
changes their coordination environment: the tetrahedron SiO4
structure is distorted, and an O−Si−O angle reduces from
109.8° to 102.3°.
Finally, we also investigated the pressure dependence of the

phase transition. The phase transition occurs in experiments at
∼22 GPa, which is higher than the 5 GPa studied in this work.
We compute the barrier of the lowest energy pathway using the
VC-DESW method under different pressures, and the results
are shown in Figure 6b. We found that the reaction barrier (per
36 atoms) decreases smoothly with the increase of the external
pressure and that the phase transition becomes a barrierless
process above 13.0 GPa. Obviously, this indicates that the
empirical potential underestimates the barrier height system-
atically and that the predicted transition pressure is too low
(∼10 GPa) compared to the experimental value. In our
ongoing work, the DFT-based pathway sampling and TS

Table 2. Force Evaluation Steps (Nforce) and the Number of
Pathways (Npath) Identified for SiO2 Homogeneous Phase
Transition from α-Quartz to the Quartz-II Phase by the
SSW/VC-DESW Pathway Sampling Method

SSW VC-DESW

Nforce 8612 20551
Npath 52 (26)a 26b

aThe total number of IS/FS pairs and those (in parentheses) related
to the α-quartz to quartz-II transition. bAll of the pathways identified
from α-quartz to quartz-II belong to the same lowest energy pathway.

Figure 6. (a) Lowest energy phase transition pathways from α-quartz
to quartz-II phase obtained using SSW/VC-DESW pathway sampling.
Light blue polyhedrons, 4-fold coordination SiO4; deep blue
polyhedrons, 6-fold coordination SiO6. (b) Reaction barriers for the
α-quartz to quartz-II phase transition under different pressures.
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location are utilized to further verify the mechanism of SiO2
phase transition.

4. CONCLUSIONS
This work develops a variable-cell version of the double-ended
surface walking method for locating TS in solid phase
transition. We describe the detailed algorithm of the new
method and focus particularly on the generalized coordinate
that includes both the lattice and atom degrees of freedom.
This generalized coordinate system with a scaled fractional
coordinate on the atom is lattice rotation invariant and can
efficiently couple the lattice and atom displacement to yield soft
eigenstates of Hessian. We demonstrate this new method in
two complex phase transition systems and show that the
method is highly efficient for TS location. We also combine the
method with the SSW crystal pathway sampling to reveal the
phase transition pathway of SiO2 under high pressure. Our
work shows that automated pathway sampling together with
the quick TS location can greatly facilitate the understanding of
solid state phase transition and the prediction of the stability of
crystals. We expect that this combination approach would be
applicable for the rational design of new material via large-scale
computational simulation.
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