Supporting Information

Pressure-induced Silica Quartz Amorphization Studied by Iterative Stochastic Surface Walking Reaction Sampling

Xiao-Jie Zhang, Cheng Shang, Zhi-Pan Liu*

Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China

*email: zpliu@fudan.edu.cn

I. SSW-RS method for reaction pathway search

A. Stochastic Surface Walking (SSW) method

The SSW algorithm¹ has an automated climbing mechanism to manipulate a structure configuration from a minimum to a high-energy configuration along one random mode direction. The method was initially developed for aperiodic systems, such as molecules and clusters², and has been extended to periodic crystals³. For solid phase transitions, this is to identify the one-to-one correspondence for lattice ($L(e_1,e_2,e_3)$, e_i being the lattice vector) and atom (q_i , i=1,...3N, N is the number of atom in cell) from one crystal phase (the initial state, IS) to another (the final state, FS), which constitutes the reaction coordinates of the reaction, i.e. $Q_{IS}(L,q) \rightarrow Q_{FS}(L,q)$, from initial state (IS) to final state (FS).

The SSW method inherits the idea of bias-potential driven constrained-Broyden-dimer (BP-CBD) method for TS location⁴. In one particular SSW step, labeled as *i*, a modified PES V_{m-to-n} (*n* is the index of the bias potential, $n=1,2\cdots H$), as shown in Eq. 1, is utilized for moving from the current minimum, \mathbf{R}_i^m to a high energy configuration \mathbf{R}_i^H (the climbing), in which a series of bias Gaussian potential v_n is added one by one consecutively along the direction \mathbf{N}_i^n .

$$V_{m-to-H} = V_{real} + \sum_{n=1}^{NG} v_n = V_{real} + \sum_{n=1}^{NG} w_n \times \exp\left[-\left((\mathbf{R}^t - \mathbf{R}_t^{n-1}) \bullet \mathbf{N}_i^n\right)^2 / (2 \times ds^2)\right]$$
(1)

where **R** is the coordination vector of the structure and V_{real} represents the unmodified PES; **R**^{*n*} are the n^{th} local minima along the movement trajectory on the modified PES that is created after adding *n* Gaussian functions. The Gaussian function is controlled by its height *w* and its width *ds*, and is always

added along one particular walking direction as defined by \mathbf{N}^{n} . Once the \mathbf{R}_{i}^{H} is reached, all bias potential are removed and the local optimization is performed to quench the structure to a new minimum (These stationary points found were assumed to be minima, i.e. given the large number of structures the frequency calculations are not performed in general during SSW structural search). The SSW applications of method can be found in our previous publications (http://homepage.fudan.edu.cn/fdzpliu/publication/).

B. SSW reaction sampling (SSW-RS) algorithm

Scheme S1. The flow chart of SSW-RS method⁵

Here we outline the SSW-RS method briefly. More details on the methodology can be found in our previous works⁶⁻¹⁰. SSW-RS explores the pathways nearby a predefined initial state and can find the lowest energy pathway linking to these nearby phases. In our implementation, the SSW-RS is fully automated and divided into three stages in simulation, namely, (i) pathway collection via extensive SSW global search; (ii) pathway screening via fast variable-cell double-ended surface walking (VC-DESW) pathway building^{5, 11, 12}; (iii) lowest energy pathway determination via VC-DESW ¹¹ TS search. The first stage is the most important and most time-consuming part, which generates all the likely pairs of reaction coordinates linking different crystal phases to ensure the identification of the best reaction coordinate, the one corresponding to the lowest energy pathway..

The scheme, as shown in **Scheme** S1, describes the procedure of SSW-RS and is explained as follows.

- (i) Input an initial structure of reactant (IS).
- (ii) Perform SSW reaction sampling to identify a new minimum (FS).
- (iii) Use the structure selection module to determine whether the new minimum is accepted/refused. If the reaction occurs, output the IS/FS pair when necessary and set the current structure to the IS; otherwise, replace the IS by the FS.
- (iv) Repeat (ii-iii) until an ensemble of enough number of IS/FS pairs is obtained.
- (v) Use VC-DESW to build the pseudo pathways from the IS/FS pairs, from which the low energy pathways are selected.
- (vi) Locate the TSs of all the low energy pathways and identify the lowest energy pathways.

II. Comparison between theoretical and experimental results

Pressure / GPa	Expt. *	DFT (GGA-PBE)	BKS**
0	0.38	0.55	-0.88
5	0.02	0.12	-1.31
10	-0.24	-0.22	-1.63
15	-0.45	-0.51	-0.78
20	-0.62	-0.75	-0.84
25	-0.78	-0.96	-0.89
30	-0.92	-1.14	-0.94

Table S1 Enthalpy difference between stishovite (H_{St}) and quartz (H_Q) at different external pressures. The energy unit is in eV per formula unit (eV/f.u.)*

*The experimental data is taken from Ref.¹³

** BKS stands for the classical van Beest, Kramer, van Santen potential in Ref.¹⁴

III. Comparison between BKS and DFT results for important structures under 15 GPa

Table S2 The lattice parameters and Si-O bond lengths of important silica phases using DFT and BKS potential. All the length is in Å and the angle is in °

Silica	n phase	Lat	tice parame	ters [*]	Lattice	Average Si-O length	Bond length
					error**		error**
QII	BKS	5.8550	4.6827	6.5097	1.1%	1.748	0.1%
		83.93	114.10	75.39			
	DFT	5.8671	4.6160	6.3738		1.746	
		86.50	113.49	73.82			
MI	BKS	6.4661	4.1325	6.9023	0.8%	1.780	0.4%
		90.00	99.22	129.72			
	DFT	6.4349	4.0543	6.8649		1.772	
		90.00	99.16	129.05			
St	BKS	4.9537	4.9526	6.4619	0.3%	1.777	0.5%
		71.75	71.7221	72.82			
	DFT	4.9306	4.9337	6.4441		1.768	
		71.46	71.50	72.99			
MII	BKS	5.0170	8.5482	5.0155	0.8%	1.771	0.06%
		50.06	114.80	97.53			
	DFT	4.9706	8.4876	4.9713		1.772	
		50.17	115.19	97.81			

* Upper line: lattice length **a**, **b**, **c**; lower line: lattice angle **alpha**, **beta**, **gamma**

** the error of BKS results with respect to DFT results

IV. Reaction pathway from QII to MI calculated by DFT and BKS

Figure S1. Reaction pathway from QII to MI calculated by BKS and DFT. The enthalpy of stishovite is set as zero in each calculation.

V. Formula to calculate the distance between two crystal phases

We utilize the generalized coordinate for crystals Q(L,q) as described in our previous work to measure the distance between two crystal phases. The approach is described as follows. For a crystal with the Cartesian coordinate **R** and the lattice matrix **L**, the fractional coordinate **q** can be calculated as

$$\mathbf{q} = \mathbf{L}^{-1}\mathbf{R} \tag{2}$$

To measure the distance for $Q_{IS}(L,q) \rightarrow Q_{FS}(L,q)$, we need to choose the same scaling matrix **S** to rescale the fractional coordinate for IS and FS phases. The scaling matrix **S** can be obtained by the Cholesky decomposition of a metric tensor **G**. The **G** tensor can be obtained from the lattice matrix of the IS and FS, as shown in the eq. 3-6.

$$\mathbf{G} = \mathbf{L}^{T} \mathbf{L} \qquad (3)$$
$$\mathbf{G}_{r} = (\mathbf{G}_{IS} + \mathbf{G}_{FS}) / 2 \qquad (4)$$
$$\mathbf{S} = \mathbf{G}^{1/2} \qquad (5)$$
$$\mathbf{q}' = \mathbf{S} \mathbf{q} \qquad (6)$$

The distance is given by the Euclidean distance between the generalized coordinates of IS and FS.

$$\mathbf{Q}_{IS} = \{\mathbf{L}_{IS}, \mathbf{q'}_{IS}\}, \mathbf{Q}_{FS} = \{\mathbf{L}_{FS}, \mathbf{q'}_{FS}\}$$
(7)

$$d = \|\mathbf{Q}_{IS} - \mathbf{Q}_{FS}\| \tag{8}$$

VI. Phase transition pathways from QII to St and MII

Figure S2. Reaction snapshots along the pathway from QII to St (also see Fig. 2 for energy profile). Polyhedron representation is used for all structures: yellow: [SiO₆], green: [SiO₅], light blue: [SiO₄].

Figure S3. Reaction snapshots along the pathway from QII to MII (also see Fig. 2 for energy profile). Polyhedron representation is used for all structures: yellow: $[SiO_6]$, green: $[SiO_5]$, light blue: $[SiO_4]$.

VII. Simulated XRD pattern

Figure S4. Simulated XRD for all possible structures (optimized with DFT under 30 GPa) from the reaction pathways, which are compared with experiment data under 30 GPa and under 40 GPa (reported in reference ¹⁵).

In order to verify the presence of the intermediate structures in PIA as determined from the lowest energy pathway in Figure 2, we also simulated the X-ray diffraction (XRD) pattern for these structures and the results are shown in Fig. S4. All the possible structures, including Q, QII, MS1, MS2, MI, MS3, TI, MS4 and MII, have been optimized at 30 GPa and their XRD were simulated using the synchrotron with a wavelength of 0.41693 Å. The experimental results from Ref. [18] are also shown in figure for comparison.

As shown, the experimental XRD peaks are quite broad, suggesting the presence of amorphous structures. It is clearly that the peaks from experiment cannot be attributed only to the known crystalline phases, Q, QII, MI and St. For example, the peak at 6.5° increases from 30 to 40 GPa, implying it cannot be only due to Q phase. From the figure, we observe that the MS1 and MS2 structure have the similar diffraction pattern with experiment at the peaks of 6.5°, 8.3°, 8.8° and 12.56°; TI phase also matches the peaks at 8.8° and 12.56°. These results suggest that MS1, MS2 and TI phases are all likely components in PIA products.

VIII. Phonon spectrum of α-quartz under 15 GPa calculated by DFT

Figure S5. Phonon dispersion of α -quartz under 15 GPa calculated with DFT.

References

- 1. C. Shang and Z.-P. Liu, J. Chem. Theory Comput., 2013, 9, 1838-1845.
- 2. X.-J. Zhang, C. Shang and Z.-P. Liu, J. Chem. Theory Comput., 2013, 9, 3252-3260.
- 3. C. Shang, X.-J. Zhang and Z.-P. Liu, Phys. Chem. Chem. Phys., 2014, 16, 17845-17856.
- 4. C. Shang and Z.-P. Liu, J. Chem. Theory Comput., 2012, 8, 2215-2222.
- 5. X.-J. Zhang and Z.-P. Liu, Phys. Chem. Chem. Phys., 2015, 17, 2757-2769.
- 6. S. C. Zhu, S. H. Xie and Z. P. Liu, J. Am. Chem. Soc., 2015, 137, 11532-11539.
- 7. S. C. Zhu, S. H. Xie and Z. P. Liu, J. Phys. Chem. Lett., 2014, 5, 3162-3168.
- 8. Y.-F. Li, S.-C. Zhu and Z.-P. Liu, J. Am. Chem. Soc., 2016, 138, 5371-5379.
- 9. S.-H. Guan and Z.-P. Liu, Phys. Chem. Chem. Phys., 2016, 18, 4527-4534.
- 10. S.-C. Zhu, S.-H. Guan, W.-N. Zhao and Z.-P. Liu, Top. Catal., 2015, 58, 644-654.
- 11. X. J. Zhang and Z. P. Liu, J. Chem. Theory Comput 2015, 11, 4885-4894.
- 12. X.-J. Zhang, C. Shang and Z.-P. Liu, J. Chem. Theory Comput., 2013, 9, 5745-5753.
- M. Akaogi, H. Yusa, K. Shiraishi and T. Suzuki, *Journal of Geophysical Research: Solid Earth*, 1995, 100, 22337-22347.
- 14. B. W. H. van Beest, G. J. Kramer and R. A. van Santen, Phys. Rev. Lett., 1990, 64, 1955-1958.
- 15. J. Haines, J. M. Léger, F. Gorelli and M. Hanfland, Phys. Rev. Lett., 2001, 87, 155503.

IX. XYZ structure coordinates for the states along the lowest energy pathways

All structures were optimized using DFT under 15 GPa. The format of the structures below is Cartesian Coordinate Archive File (.arc).

α-quartz (Q)

!BIOSYM archive 2 PBC=ON

!D	A	T]	Е

PBC	6.9205	4.5519	6.9250	109.1586	110.51	.99	70.8007			
0	0.3793	90935	-0.817227064	5.852	2052898	CORE	1 O	0	0.0000	1
0	5.9747	06667	0.04521607	6 0.93	5400503	CORE	2 O	0	0.0000	2
0	3.6970	09204	0.838395864	4 1.96	5991037	CORE	3 O	0	0.0000	3
0	5.8018	34162	2.112736474	4 2.704	4594517	CORE	4 O	0	0.0000	4
0	2.0491	65334	1.413937989	9 4.082	2852154	CORE	5 O	0	0.0000	5
0	-0.22852	25124	2.207120906	5.113	8447086	CORE	6 O	0	0.0000	6
0	3.1054	32470	3.624485504	4 1.55	1719483	CORE	7 O	0	0.0000	7
0	2.6883	28194	0.78863614	1 6.49	0902208	CORE	8 O	0	0.0000	8
0	4.2436	15916	3.22988250	1 4.49	6688131	CORE	9 O	0	0.0000	9
0	4.6035	19820	0.694503153	3 4.69	9175295	CORE	10 O	0	0.0000	10
0	-0.3066	71081	-0.580106337	3.343	448088	CORE	11 O	0	0.0000	11
0	1.2486	20840	1.86116574	5 1.34	9214326	CORE	12 O	0	0.0000	12
Si	1.22385	9330	2.710789940	4.598	287976	CORE	13 Si S	Si	0.0000	13
Si	5.14941	0720	1.342064374	1.450	827435 (CORE	14 Si S	Si	0.0000	14
Si	1.51977	6562	3.385111699	1.791	427750	CORE	15 Si S	Si	0.0000	15
Si	3.01787	9063	0.455131960	4.938	909508 (CORE	16 Si S	Si	0.0000	16
Si	5.33752	3499	2.057214449	4.256	940709 (CORE	17 Si S	Si	0.0000	17
Si	2.34252	3794	0.688491353	1.109	455317 (CORE	18 Si S	Si	0.0000	18
end										

end

Quartz II (QII)

!BIOSYM archive 2 PBC=ON

PBC	5.8671	4.6160	6.3738	86.4996	113.4868	73.8160			
0	0.07227	2302	1.912529599	5.238	345521 CO	RE 1 O	0	0.0000	1
0	4.87180	00447	0.548031403	0.623	075097 CO	RE 2 O	0	0.0000	2
0	3.06155	59176	1.749275731	1.916	349005 CO	RE 3 O	0	0.0000	3
0	4.91924	6114	3.557866215	2.371	840166 CO	RE 4 O	0	0.0000	4

0	1.311403931	3.335808732	3.489571938 CORE	50 O	0.0000	5
0	-0.498811193	4.537093750	4.782817833 CORE	60 O	0.0000	6
0	2.523553419	4.288491003	1.477860882 CORE	7 O O	0.0000	7
0	1.753289531	3.812789130	5.693084612 CORE	80 O	0.0000	8
0	3.011254069	5.206071891	3.996364540 CORE	90 O	0.0000	9
0	3.543709113	2.643171559	4.344325386 CORE	10 O O	0.0000	10
0	-0.553471897	1.025014135	2.826586663 CORE	1100	0.0000	11
0	0.704502238	2.418279172	1.129867925 CORE	12 O O	0.0000	12
Si	1.107531172	4.842854058	4.427038862 CORE	13 Si Si	0.0000	13
Si	4.667913970	2.055082665	1.560553659 CORE	14 Si Si	0.0000	14
Si	0.936851271	3.951105077	1.888864867 CORE	15 Si Si	0.0000	15
Si	1.957050621	2.305782948	4.755341390 CORE	16 Si Si	0.0000	16
Si	4.194102486	4.012973391	3.827275043 CORE	17 Si Si	0.0000	17
Si	1.887318377	1.225174752	0.960827645 CORE	18 Si Si	0.0000	18
end						

end

Monoclinic I (MI)

BIOSYM archive 2 PBC=ON

!DATE

PBC	6.4349	4.0543	6.8649	89.9994	99.159	95 12	9.0547				
0	4.72404	14448	0.361279126	1.384	028917	CORE	1 O	0	0.000	0	1
0	2.37074	48011	1.336602591	0.632	939563 (CORE	2 O	0	0.000	0	2
0	0.09858	86050	1.918066474	5.852	205424	CORE	3 O	0	0.000	0	3
0	2.19474	43056	1.174386903	5.121	913772	CORE	4 O	0	0.000	0	4
0	1.21670	07510	0.469412798	2.871	007481	CORE	5 O	0	0.000	0	5
0	0.3357	73232	-0.499933892	5.121	919008 C	CORE	6 O	0	0.000)	6
0	-2.02365	4496	2.787179000	0.632	946817 0	CORE	7 O	0	0.000)	7
0	3.32489	99781	1.836567874	2.870	973689 (CORE	8 O	0	0.000	0	8
0	1.01540	07379	2.642452515	3.622	069059	CORE	9 O	0	0.000	0	9
0	-1.02510	3640	1.191861554	3.622	074278 0	CORE	10 O	0	0.000)	10
0	4.51200	00256	0.444035541	5.852	193924 (CORE	11 O	0	0.000	0	11
0	0.06132	26990	2.142523504	1.384	027815	CORE	12 O	0	0.000	0	12
Si	-1.524362	2042	1.989522773	2.1275	08413 C	ORE	13 Si Si	i	0.0000	13	
Si	1.69309	5312	1.989526357	2.1275	509337 C	ORE	14 Si S	i	0.0000	14	
Si	-0.392061	1518	2.924252385	-0.11920	01254 CO	ORE	15 Si Si		0.0000	15	
Si	1.74836	4429	2.018324793	6.5999	932806 C	ORE	16 Si S	i	0.0000	16	
Si	3.77819	8612	1.054785997	4.3741	97396 C	ORE	17 Si S	i	0.0000	17	
Si	0.54500	8831	1.074168207	4.3742	201297 C	ORE	18 Si S	i	0.0000	18	
end											

end

Stishovite (St)

!BIOSYM archive 2 PBC=ON

!DATE										
PBC	4.9306	4.9337	6.4441	71.4578	71.50	42 7	72.9945			
0	3.01590	2487	2.240000609	0.118	3620026	CORE	1 O	0	0.0000	1
0	5.40240	3579	6.232722741	5.823	3840123	CORE	2 O	0	0.0000	2
0	6.50322	3367	4.824476094	4.065	5224384	CORE	3 O	0	0.0000	3
0	2.93714	8350	2.177698333	3.632	2499610	CORE	4 O	0	0.0000	4
0	4.03812	9534	0.769564793	1.873	3769190	CORE	5 O	0	0.0000	5
0	4.03786	1159	4.420718198	3.846	6976941	CORE	6 O	0	0.0000	6
0	4.38029	3259	3.244522245	1.659	9177289	CORE	7 O	0	0.0000	7
0	6.84563	6653	3.648196508	1.877	7347849	CORE	8 O	0	0.0000	8
0	2.93707	8665	5.829016085	5.605	5747969	CORE	9 O	0	0.0000	9
0	1.57281	8945	1.173207588	2.091	1900564	CORE	10 O	0	0.0000	10
0	5.40245	1659	2.581389255	3.850	0548120	CORE	11 O	0	0.0000	11
0	0.55059	3733	1.836310427	-0.099	578864	CORE	12 O	0	0.0000	12
Si	5.441779	9736	4.034492386	2.862	152702 0	CORE	13 Si S	Si	0.0000	13
Si	5.441938	8192	0.383255222	0.888	918114 (CORE	14 Si S	Si	0.0000	14
Si	1.533442	2236	1.142084511	3.848	817153 0	CORE	15 Si S	Si	0.0000	15
Si	2.976552	2036	2.208861553	1.875	539747 (CORE	16 Si S	Si	0.0000	16
Si	6.463932	2857	4.793359055	5.822	114088 (CORE	17 Si S	Si	0.0000	17
Si	3.998693	3711	2.967724965	4.8354	447532 (CORE	18 Si S	Si	0.0000	18
end										

end

Monoclinic II (MII)

!BIOSYM archive 2 PBC=ON

PBC	4.9706	8.4876	4.9713	50.1670	115.1864	9	7.8071			
0	0.8947	65742	4.580245102	1.502	474123 CC	ORE	10	0	0.0000	1
0	-0.35555	53750	6.550524909	2.938	372023 CO	RE	20	0	0.0000	2
0	0.8376	62053	1.290156794	0.211	896002 CC	ORE	30	0	0.0000	3
0	-2.64832	23573	6.042276063	3.211	815322 CO	RE	4 O	0	0.0000	4
0	3.1875	36407	5.088487009	1.229	027090 CC	ORE	50	0	0.0000	5
0	2.2651	69224	2.752189065	1.921	240719 CC	ORE	6 O	0	0.0000	6
0	-0.64771	9903	7.239759169	0.516	788629 CO	RE	7 O	0	0.0000	7
0	-0.24061	4255	2.428958117	2.214	719649 CO	RE	8 O	0	0.0000	8
0	-1.72601	9672	8.378501351	2.519	659161 CO	RE	90	0	0.0000	9
0	0.77978	84858	8.701798162	2.226	134684 CC	ORE	10 O	0	0.0000	10

0	3.302481528	0.966927633	0.505375951 CORE	1100	0.0000) 11
0	1.817081131	6.916466737	0.810322172 CORE	12 O O	0.0000) 12
Si	2.254502671	4.378691454	2.615173650 CORE	13 Si Si	0.0000	13
Si	0.826981944	2.916639470	0.905824494 CORE	14 Si Si	0.0000	14
Si	-1.715331276	6.752077350	1.825622716 CORE	15 Si Si	0.0000	15
Si	-0.287830280	8.214118277	3.534971500 CORE	16 Si Si	0.0000	16
Si	2.178437172	9.769840057	2.220414404 CORE	17 Si Si	0.0000	17
Si	0.750905319	8.307785758	0.511045335 CORE	18 Si Si	0.0000	18
end						

end

MS1

!BIOSYM archive 2 PBC=ON

!DATE

PBC	6.3310	4.6434	6.0694	113.7972	86.467	2 10	9.7787				
0	2.87232	20746	3.942546582	0.936	477467 (CORE	1 O	0	0.000	00	1
0	3.16100	67166	-0.914750960	5.6462	289909 C	ORE	2 O	0	0.000	0	2
0	1.71879	96045	1.094400139	4.595	918503 C	CORE	3 O	0	0.000	00	3
0	4.2724	53030	0.824615924	4.234	626704 0	CORE	4 O	0	0.000	00	4
0	2.5675	53334	0.692282335	5 2.243	595533 (CORE	5 O	0	0.000	00	5
0	1.54792	23999	-1.212446707	3.6882	217314 C	ORE	6 O	0	0.000	0	6
0	-0.70250	07054	4.153428450	0.4682	211812 C	ORE	7 O	0	0.000	0	7
0	4.39733	32274	2.584181117	2.258	828775 0	CORE	8 O	0	0.000	00	8
0	3.9800	59453	-1.175777540	3.2029	945232 C	ORE	9 O	0	0.000	0	9
0	-0.15278	87283	0.682433524	2.6716	575497 C	ORE	10 O	0	0.000	0	10
0	5.8168	17528	-0.974532050	5.0482	290317 C	ORE	11 O	0	0.000	0	11
0	0.91230	00280	2.620140827	1.367	036952 (CORE	12 O	0	0.000	00	12
Si	-0.320363	3544	2.255663538	2.4140.	36087 CO	ORE	13 Si Si	i	0.0000	13	
Si	2.67950	9964	2.314441714	1.6846	43205 C	ORE	14 Si S	i	0.0000	14	
Si	2.55016	8167 -	0.126787269	0.5219	18992 CO	ORE	15 Si Si	i	0.0000	15	
Si	5.72187	3594 -	0.027634491	-0.03778	89502 CC	ORE	16 Si Si		0.0000	16	
Si	5.41394	0851 -	0.415870704	3.57753	30615 CO	ORE	17 Si Si	i	0.0000	17	
Si	2.70063	7384 -	0.041946362	3.92998	88623 CO	ORE	18 Si Si	i	0.0000	18	

```
end
```

end

MS2

!BIOSYM archive 2 PBC=ON

PBC	5.8653	4.4867	7.0607	99.6736	90.39:	58 12	1.2837			
0	4.21023	3602	-0.069119626	1.242	880599 (CORE	1 O	0	0.0000	1
0	2.29264	6876	1.486984573	0.596	880964	CORE	2 O	0	0.0000) 2
0	0.81318	1723	1.752762007	6.098	017530	CORE	3 O	0	0.0000) 3
0	2.85583	9407	1.258715123	5.143	671938	CORE	4 O	0	0.0000) 4
0	1.59701	6876	0.747077227	2.891	048732	CORE	5 O	0	0.0000) 5
0	1.14059	7787	-0.508266755	4.739	803060 0	CORE	6 O	0	0.0000	6
0	-1.60718	9884	3.434185996	0.237	369861 (CORE	7 O	0	0.0000	7
0	3.45001	4342	2.394599786	2.657	987381	CORE	8 O	0	0.0000) 8
0	1.28133	0507	2.871367746	3.833	531644	CORE	9 O	0	0.0000) 9
0	-0.58257	7411	1.188650172	3.929	533185 (CORE	10 O	0	0.0000	10
0	4.82370	3520	-0.211766979	6.079	739079 (CORE	11 O	0	0.0000	11
0	0.05581	6426	2.467692057	1.781	577956	CORE	12 O	0	0.0000) 12
Si	-0.963449	206	2.784189478	3.1651	58220 C	ORE	13 Si S	i	0.0000	13
Si	1.923316	5308	2.252891630	2.0726	553460 C	CORE	14 Si S	Si	0.0000	14
Si	-0.026865	435	3.662642180	0.5072	74032 C	ORE	15 Si S	i	0.0000	15
Si	2.669579	9745	2.109845720	6.7063	33229 0	CORE	16 Si S	Si	0.0000	16
Si	4.149513	3535	0.311686165	4.7509	921273 (CORE	17 Si S	Si	0.0000	17
Si	1.126768	3358	1.129662494	4.5402	247852 C	CORE	18 Si S	bi	0.0000	18
1										

end

end

MS3

!BIOSYM archive 2 PBC=ON

PBC	5.0421	4.7900	6.7537	114.3017	102.79	47 7	72.0823				
0	1.7127279	957	1.59757406	9 0.969	9775561	CORE	10	0	0.0000		1
0	4.1178776	678	0.04192348	3 5.144	4540200	CORE	2 O	0	0.0000		2
0	1.8601703	347	2.57735442	3 4.658	343271	CORE	3 O	0	0.0000		3
0	1.6630559	982	0.26812012	8 5.246	5198661	CORE	4 O	0	0.0000	4	4
0	0.3841793	336	0.48257167	5 3.059	9043103	CORE	5 O	0	0.0000		5
0	4.2018685	589	1.41770672	5 1.003	3266927	CORE	6 O	0	0.0000) (6
0	2.7048099	919	0.49982466	6 3.136	5550434	CORE	7 O	0	0.0000	, ,	7
0	4.3482396	628	3.91671339	8 0.706	6366418	CORE	8 O	0	0.0000		8
0	5.4893509	987	3.034955014	4 2.649	9952505	CORE	9 O	0	0.0000	9	9
0	2.9019672	286	2.80886992	8 2.548	3404540	CORE	10 O	0	0.0000	10	0
0	1.8591115	570	4.09660460	0 0.672	2883881	CORE	11 O	0	0.0000	1	1
0	4.1807778	807	2.59430686	6 4.735	5377308	CORE	12 O	0	0.0000	12	2
Si	3.0305302	33	2.757133734	0.838	169933 (CORE	13 Si Si	i	0.0000	13	
Si	4.1086794	15 -(0.068976721	1.9066	521067 C	CORE	14 Si Si		0.0000	14	
Si	1.4456730	95	1.755417932	2.664	971699 (CORE	15 Si Si	i	0.0000	15	
Si	-1.01692263	34 -1	.411975523	5.8875	31947 C	ORE	16 Si Si		0.0000	16	

```
Si
1.545619749
-0.740347803
3.897324566 CORE
17 Si Si
0.0000
17

Si
3.119355719
1.321348740
5.129209802 CORE
18 Si Si
0.0000
18

end
```

Triclinic I (TI)

!BIOSYM archive 2 PBC=ON

!DATE

PBC	5.0251	4.8924	6.8959	120.5317	102.11	90	73.0168				
0	1.6206	40417	1.602622299	0.99	6563674	CORE	10	0	0.000	0	1
0	3.8880	59749	-0.775449640	4.868	8996577	CORE	2 O	0	0.000	0	2
0	1.6599	48731	1.857917032	4.58	1192976	CORE	3 O	0	0.000	0	3
0	1.6017	55128	-0.546413121	4.966	5831728	CORE	4 O	0	0.000	0	4
0	0.2667	60074	0.466715144	1 2.89	8515465	CORE	5 O	0	0.000	0	5
0	4.1139	75313	1.364378803	0.93	0362278	CORE	6 O	0	0.000	0	6
0	2.7468	73388	0.312067006	5 3.05	1585587	CORE	7 O	0	0.000	0	7
0	4.2529	34246	3.928872679	0.70	9243537	CORE	8 O	0	0.000	0	8
0	5.3423	48996	2.998382240	2.65	1825789	CORE	9 O	0	0.000	0	9
0	2.8204	80206	2.744943323	3 2.57	9087648	CORE	10 O	0	0.000	0	10
0	1.7703	76597	4.081852218	0.66	0652950	CORE	11 O	0	0.000	0	11
0	4.1547	51805	1.849194175	5 4.62	8968986	CORE	12 O	0	0.000	0	12
Si	2.95012	29003	2.706328155	0.791	758288 (CORE	13 Si S	i	0.0000	13	
Si	4.14495	6223	-0.120241350	1.865	925907 (CORE	14 Si S	i	0.0000	14	
Si	1.39122	2616	1.635863742	2.799	253092 (CORE	15 Si S	i	0.0000	15	
Si	-0.97048	8144 -	2.250883101	5.7645	575772 C	ORE	16 Si Si		0.0000	16	
Si	2.53617	·6189 ·	-1.390242092	3.722	614806 C	CORE	17 Si S	i	0.0000	17	
Si	2.95424	4449	0.697446748	4.933	582785 0	CORE	18 Si S	i	0.0000	18	

end

end

MS4

!BIOSYM archive 2 PBC=ON

PBC	6.3006	7.1079	4.9285	60.0912	122.3161	102	2.6260			
0	1.30443	7428	3.542020778	1.817	370367 C	ORE	10	0	0.0000	1
0	-0.640714	595	5.010727660	2.978	546270 CO	ORE	2 O	0	0.0000	2
0	1.33280	5841	1.008283174	1.029	578230 C	ORE	3 O	0	0.0000	3
0	-3.163250	0136	4.506125578	3.663	342707 CO	ORE	4 O	0	0.0000	4
0	3.82698	1467	4.046660216	1.132	547355 C	ORE	5 O	0	0.0000	5

0	3.165739352	1.972300698	2.875605954 CORE	60 O	0.000	0	6
0	-0.496361973	5.561514935	0.463154145 CORE	70 O	0.000	0	7
0	-0.672465572	2.027139900	2.486730199 CORE	80 O	0.000	0	8
0	-2.501712282	6.580449623	1.920296619 CORE	90 O	0.000	0	9
0	1.336547762	6.525588497	2.309117483 CORE	10 O O	0.000	0	10
0	3.795198905	1.063042752	0.640771405 CORE	110 0	0.000	0	11
0	1.965949018	5.616368894	0.074275430 CORE	12 O O	0.000	0	12
Si	2.269938934	3.241487225	3.100264845 CORE	13 Si Si	0.0000	13	
Si	0.437058458	2.277433610	1.254292241 CORE	14 Si Si	0.0000	14	
Si	-1.606061265	5.311195140	1.695407295 CORE	15 Si Si	0.0000	15	
Si	2.861593282	4.347137358	-0.150560580 CORE	16 Si Si	0.0000	16	
Si	2.705505348	7.744405462	2.397963110 CORE	17 Si Si	0.0000	17	
Si	0.872606926	6.780335153	0.551945602 CORE	18 Si Si	0.0000	18	
end							

ciiu

end