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1. SSW-NN methodology 
1.1 HDNN architecture 

Fig. S1. Scheme for the HDNN architecture. The subscripts i and N represent atom indices and total number of atoms in a 
structure. The input of a NN is a set of structural descriptors {Gi} constructed from Cartesian coordinates {R} of a structure, 
and the outputs are the atomic properties { Ei, Fi, Si }, i.e. energy, forces and stresses. The overall properties Etot, Ftot, and Stot, 
can be calculated from the individual atomic contributions. 
 

In this work, we utilized the high dimensional neural network (HDNN) scheme to construct the NN1, 2. The NN 
architecture is schematically shown in Fig. S1. In Eq 1, the total energy Etot can be decomposed and written as a linear 
combination of atomic energy Ei, which is the output of the standard neural network. The input nodes are a set of geometry-
based structural descriptors, {Gi}, and are very detailed discussed in main text.  
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The atomic force can be analytically derived according to Eq. 2, where the force component Fk,a, α=x, y or z, acting on 
the atom k is the derivative of the total energy with respect to its coordinate Rk,a. By combining with Eq. 1, the force component 
can be further related to the derivatives of the atomic energy with respect to jth structural descriptors of atom i, Gj,i: 
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Similarly, the static stress tensor matrix element σαβ can be analytically derived as: 
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where rd and rd are the distance vector constituting of Gj,i and its module, respectively, and V is the volume of the structure.  
 
1.2 Constructing global dataset using SSW-NN 
Undoubtedly, the dataset used for training the NN determines largely the quality of NN PES. Our previous work has shown 
that the stochastic surface walking (SSW) global optimzation3, 4 can be used to fast generate a global dataset, which 
incorporates different structural patterns on the global PES. The details of SSW method can be found in the previous work. 
The SSW PES search is fully automated and does not need a priori knowledge on the system, such as the structure motif (e.g., 
bonding patterns, symmetry) of materials. The final obtained boron global dataset in this work is detailed in Table S1.  

In brief, the SSW-NN method involves three stages for constructing the global dataset, as described in the following.  
(i) The first stage constructs a raw dataset, which contains the most commmon atomic environment and serves as the 

training dataset for building an initial NN PES. This is done by performing first principles SSW global optimization in a 
massively parallel way. The first principles calculation is typically with low accuracy setups and restricted to small unit cells 
(typically below 20 atoms) to speed up the SSW search. By collecting and screening the structures from the SSW trajectories, 
a raw dataset is finally obtained. 

(ii) The second stage trains an NN global PES. This is done by first refining the dataset using first principles calculation 
with high accuaracy setups, followed by the NN training on the accurate global dataset. The NN architecture applied in this 
stage utilizes a small set of structural descriptors and a small network size.   

 (iii) The third stage iteratively expands the global dataset. It targets to increase the predictive power of NN PES by 
incorporating more structural patterns into the dataset. This is done by carrying out SSW PES search using the NN PES 
obtained in the second stage, starting from a variety of initial structures. These initial structures are often randomly 
configurated and also include large systems with many atoms per unit cell (e.g. 100 atoms). The structures from all SSW 
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trajectories are collected and filtered to genereate the addtional dataset. This new dataset is then fed to the global dataset (back 
to stage 2) to start a new cycle of NN training.  

 

 
 
Scheme. S1. Procedure for generating the training dataset using SSW global optimization. At the first stage, the SSW sampling 
is typically calculated with low accuracy first principle calculations. At the second stage, the global dataset is first refined 
using high accuracy setups, followed by the NN training on the accurate global dataset. At the third stage, an additional dataset 
is generated by SSW sampling utilizing NN PES obtained previously. This additional dataset is then fed into global dataset  
(back to stage 2) and start a new cycle of NN training.  
 
 

 
Table S1. Structures in the first principles global dataset.  

Natom
† Nbulk

‡ Nlayer
‡ Ncluster

‡ Ntotal
‡ 

12 32467 3037 8002 43506 
14 51687 156 0 51843 
28 7480 0 0 7480 
40 469 15 21558 22042 

13~52 8920 1441 0 10361 
80 0 0 21333 21333 

104~107 8858 0 0 8858 
Total 109881 4649 50893 165423 

†: the number of atoms per unit cell. The 13~52 entry has excluded those listed explicitly (12, 14, 28 and 40 atoms per cell). 
‡: Nbulk, Nlayer, Ncluster are the number of structures belong to bulk, layer, and cluster types 

 
 
 
1.3 Statistical assessment of structural descriptors for structure discrimination 

 The boron global dataset is an ideal test ground for structural descriptors. The dataset includes a vast amount of structures 
(165,423) ranging from bulk to clusters, where the number of boron atoms reaches to 5,334,657 in total. A critical task for us 
is to identify the most sensitive structural descriptors for distinguishing atomic environment.  
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 For this purpose, we have to first generate a large number of distinct structural descriptors, which form a structural 
descriptor pool for selection. In total, 768 structural descriptors, belonging to the eight types (two Behler-type strcutural 
descriptors, BTSDs and six power-type strcutural descriptors, PTSDs), were generated by systematically adjusting the 
parameters in Eq. 3 to 11 (in the main test) with a fixed cutoff radius, i.e. 3.2 Å (the first and second nearest neighboring atomic 
environment for boron). There are 72, 64, 54, 45, 168, 180, 105, 80 for G2, G4, S1, S2, S3, S4, S5 and S6, respectively. For each 
structural descriptor, its value for each atom in the global dataset was calculated and scaled to (0, 1) according to the maximum 
and the minimum values. This finally generates a dataset matrix X with (n´p) dimensionality, where the row (n) runs over all 
atoms and each column (p) gives the values from a particular structural descriptor in the dataset. 

The principle component analysis (PCA)5 statistics method was then utilized to compare statistically the structural 
descriptors. The PCA map each row vector x(i) of dataset matrix X (i is the atom index) to a linearly uncorrelated new vector 
of principle component scores t(i), given by the matrix transformation in Eq. S4, where the subscript L represents the possibility 
of dimensionality reduction by truncation to the first L loading vectors. To maximize variance, the k-th column of W with the 
element wjk where j indexes the structural descriptor has to be the k-th eigenvector for the covariance matrix XTX of the dataset 
matrix X. It is useful to examine the weight wjk

2 and the explained variance λk (Eq. S5) from PCA. The former represents the 
weight for the transformation from j-th structural descriptor to the k-th principal component; and the latter measures the 
dataset’s variance that is projected onto the k-th principal component.  

?@ = AB@	(S4)	

EF = G%F
H 	(S5)

%
	

J = EF×LMF
H

F

, (S6)	

The above PCA were carried out in two steps. The structural descriptors belong to the same type were analyzed first by 
selecting L=1 to identify the one with the largest wj1

2. The as-identified eight structural descriptors, one for each type, were 
again analyzed using PCA by selecting L=3 to compare their ability for structure discrimination. We found that the explained 
variance for the first three principle component are 80.9%, 12.6% and 3.0%, respectively, covering in total > 95% of the 
information from the structural descriptors. The transformation matrix element wjk

2 from PCA in the first three principal 
components are listed in Table S2. 
�

Table S2. The principal component analyses for different structural descriptors (SD) on the global dataset, showing the weights 
for the first three PCA components wj12 to wj3

2 and the score (S) for each type of structural descriptors.  

SD Type† n‡ LMO
H /% LMH

H /% LMP
H /% S 

G2 two 72 20.1 3.1 1.9 0.17 

G4 three 64 0.2 0.4 0.5 0.00 

S1 two 54 22.0 2.1 1.5 0.18 

S2 two 45 9.7 89.6 0.1 0.19 

S3 three 168 17.6 0.9 0.0 0.14 

S4 three 180 12.4 1.6 25.4 0.11 

S5 three 105 15.0 1.2 69.4 0.14 

S6 four 80 3.1 1.0 1.1 0.03 

†: the type of the SD, i.e. two-, three- and four-body 

‡: the total number of SDs in each type generated for screening out the one with the largest wj1
2 at the first stage (see text). 

 
 In the first component, the wj1

2 of two-body functions (G2 and S1, >20%) are generally larger than those of three-body 
functions (S3, S4 and S5, ~15%), and both of them are much larger than that of four-body function (S6, ~3%). This ordering is 
consistent with the common knowledge from classical force field, where the magnitude of the energy contribution follows 
stretching > bending > twisting. More importantly, for the second component, it is the S2 (~90%) that dominates the weights, 
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and for the third component S5 (~70%) prevails the other descriptors. These indicate that the S2 and S5 capture additional 
structural information, which can obviously be attributed to the incorporation of the spherical function in both cases.  

Using Eq. S6, we can finally derive the score (S) for each structural descriptor by summing up their contributions in the 
first three principal components, which are also listed in Table S2. It tells that the two-body functions G2 and S1 achieve the 
similar scores, implying that they are indeed inter-replaceable (as suggested from Fig. 2 in main text). As for the three-body 
functions, the score for G4 is considerably smaller than others (S3, S4 and S5). This may not be surprising because the radial 
part of G4 lacks of the ability to probe the atomic environment away from the atomic center.  

In short, the PCA demonstrates that the new PTSDs outperform the BTSDs in the boron global dataset. In particular, it 
outlines the importance of S2, S4 and S5 descriptors, which rank the top in two-body and three-body functions. Apparently, the 
incorporation of spherical harmonic function in S2 and S5 PTSDs enhances substantially the structures discrimination ability. 

 
1.4 Performance of NN training with respect to the choice of structural descriptor and network size 

Knowing the relative ranking of individual structural descriptors, we still need to identify the optimal set of structural 
descriptors that act together as the input to achieve the best performance in NN training. To do so, the network size, i.e. the 
number of training parameters in NN, must also be considered since it is well known that the fitting parameters can significantly 
affect the NN training speed and the predictive power.  

While there are in principle infinite combinations by changing the structural descriptors and network size, we have 
experimented to setup two groups network, group NA and group NB, each with five different sets of structural descriptors. All 
the networks are fully-connected feedforward NN with two hidden layers. The two groups differ in the network parameters, 
as controlled by the number of neurons: group NA has ~8500 network parameters and group NB has ~25000 network parameters. 
The five sets of structural descriptors, denoted as set-1 to set-5, are as listed in Table S3, having 64, 90, 118, 130 and 152 
structural descriptors. These ten different networks are therefore denoted as NA-1 to NA-5 for group NA, and NB-1 to NB-5 for 
group NB, and their details are summarized in Table S4. It is expected that the more types and the larger numbers of structural 
descriptors, as on going from set-1 to set-5, the better the atomic structure can be distinguished. 

 

Table S3. The number of the structural descriptors (G2 to S6, in Eq. 3-11 in main text) in the set-1 to set-5. 

set G2 G4 S1 S2 S3 S4 S5 S6 Tot 

1 0 6 23 9 6 20 0 0 64 

2 8 0 29 9 22 22 0 0 90 

3 6 11 29 10 28 25 0 9 118 

4 6 11 29 22 28 25 0 9 130 

5 6 11 29 22 28 25 22 9 152 

 

Table S4. The network architecture in the standard notation of ten networks (Nt.) with the set 1 to 5 structural descriptors.  

Nt. architecture Npara† Nt. architecture Npara 

NA-1 64-65-65-1 8581 NB-1 64-150-105-1 25711 

NA-2 90-61-51-1 8561 NB-2 90-120-120-1 25561 

NA-3 118-50-48-1 8447 NB-3 118-110-110-1 25411 

NA-4 130-47-47-1 8461 NB-4 130-106-106-1 25335 

NA-5 152-43-42-1 8470 NB-5 152-100-100-1 25501 

†: the total number of parameters in the network. 

To be more specific, the five sets of structural descriptors are mainly constituted by S1/S2/S3/S4 PTSDs, since they are 
more effective in distinguish boron structures demonstrated above. The G2 and G4 BTSDs are also selected to append to 
different sets: the set-1 with G2 only, the set-2 with G4 only and the others with both G2 and G4. The four-body PTSD S6 is 
added to the three largest sets, while the S5 is only present in the set-5. It should be mentioned that at a given cutoff rc, the S5 
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and S6 are typically the most expensive structural descriptors to compute and therefore they are only considered in the large 
sets. The parameters utilized for each structural descriptor have been tuned initially to ensure their coverage for different radius 
(up to 7 Å) and different angular distributions (one example of the parameters for structural descriptors in set-1 is shown in 
Table S5 to Table S9 in section 3). 

For the purpose of the fast training of the ten different networks, we have generated a smaller but representative dataset. 
In total, 8,000 structures were taken randomly from the global dataset, which were then split into a training set (7,200 structures) 
and a test set (800 structures). Similarly, this dataset can be visualized, as shown in Fig. S2, by projected onto the distance-
weighted Steinhart-type order parameter and the energy. Two figures, Fig. 1b (in main text) and Fig. S2, are indeed similar, 
indicating that this smaller dataset covers the whole global PES and is suitable for testing purpose. For future benchmarking 
in community, this 8000-dataset is also included in SI as seperated files, containing structural coordinates and 
energetics/forces/stresses data.  

Our NN training procedure follows exactly that described in our previous work2, where the performance function Q"#"	to 
measure the deviation of energy, force and stress, as defined in Eq. S7, is minimized using the L-BFGS algorithm6, 7.  

Q"#" = QR + TQU + VQW 	=
1
2X

!%
YY − !%

Z[\] H
+

T
6X %̂,M,F

YY − %̂,M,F
Z[\] H
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V
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%

			

In the equation, i is structure indices, j is atom indices, k = x, y, or z, a, b are indices of stress matrix, !%YY, !%
Z[\], %̂,M,F

YY , 
%̂,M,F
Z[\], %̀,a,b

YY , and %̀,a,b
Z[\] are energy, forces, and stresses from NN and first-principles calculations, respectively. The adjustable 

parameters r and t are set as constant, being 1000.0 and 4.0 in the training.  
  

1.5 General rules for choosing the optimal network 
 Our main results for the NN training of the ten different networks are shown in Fig. S3. Fig. S3a and b plots the 

performance function Q"#"	of the training dataset against the training epoch for the small networks (NA) and the large networks 
(NB), respectively, and Fig. S3c plots the performance function of the test dataset against the training epoch for all networks. 
From the figures, we can obtain four general rules on the training of NN global PES, which are summarized as follows. 

First, the fitting ability of the NN depends, not surprisingly, both on the structural descriptor and on the network size. 
The more complete the structural descriptor and the larger the network size is, the lower the performance function would be. 
This is in accordance with the general knowledge that the fitting capability and the network size are positively correlated in 
the fully-connected network. The lowest performance function for both group NA and NB occurs in the largest set-5, where the 
performance function reaches 43.6 for NA -5 (purple line in Fig. S3a) and 31.7 for NB-5 (purple line in Fig. S3b).  

Second, with a given network size, the performance function for the training dataset will converge to some constant value 
when the structural descriptors approach to the complete. In the group NA, the performance function converges to ~45 for NA-

Fig. S2. The OP6-E contour map of the selected dataset from global dataset for training purpose. OP6 is the distance-weighted 
Steinhart order parameter in Eq. 1 (main text) with L=6 and the density of states (DOS) is indicated by color. The energy of α-
B is set as energy zero. 
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3 to NA-5; in the group NB, the performance function converges to ~32 for NB-3 to NB-5. This suggests the presence of a 
saturation limit for the structural descriptor set, when all structures in the dataset can be discriminated. Beyond the saturation 
limit, the further increase of the structural descriptors is effectively equivalent to the increase of the network size and has a 
less obvious effect on the overall performance. 

Third, the performance function for the test dataset, even with the largest structural descriptor set and the largest network 
size, i.e. NB-5, is always poorer compared to that for the training dataset. Importantly, this is unlike that in the training dataset, 
where the performance function always improves by continuously expanding the structural descriptor set or enlarging the 
network size. Fig. S3c shows that the performance function for the test dataset are very close for all large sets, NA-3, NA-4, 
NA-5, NB-3, NB-4 and NB-5. It suggests that the predictive ability of NN as measured by the performance function for the test 
dataset is hard to improve when the test dataset has no overlapping with the training dataset. In practice, one would have to 
incorporate as many as possible structural patterns in the training dataset to shrink the difference between training and test 
dataset.  

Fourth, the performance function for the test dataset converges much rapidly with respect to the structural descriptor set 
and the network size. Fig. S3c shows that the performance function for the test dataset in all networks reaches to the plateau 
within 5000 training epochs, which is in contrast with the slow convergence of the performance function for the training set, 
typically beyond 10000 epochs. Excessively long training, on the other hand, could lead to the overfitting. As shown by the 
rapid increase in the performance function for NB-1 and NB-2 after 10000 epochs, these two networks with the small structural 
descriptor set but the large network size are obviously more vulnerable to the overfitting. By contrast, the performance function 
for NB-3 to NB-5 only increase slightly after long training, which implies that the overfitting can be overcome by using large 
structure descriptor set. In general, the large structure descriptor set and the small network size are preferable to avoid the 
overfitting.  
 
 

1.6 DFT calculation setups 
All DFT calculations are performed using the periodic plane wave method as implemented in the VASP package8, 9. The 

ionic core electrons are described using the projector augmented wave (PAW) pseudopotential10. The electron exchange and 
correlation effects are described by the GGA-PBE functional11. For the low accuracy calculations used in SSW sampling to 
collect raw data set, the kinetic energy cutoff for plance wave basis is 400 eV; the first Brillouin zone is sampled using the 
Monkhorst−Pack scheme12 with a (3 × 3 × 3). For the high accuracy calculations used in single-point energy refinement 
calculations to build the global data set, these two key setups increase to 600 eV and (4 × 4 × 4), respectively. 
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2. Pair distribution function of α-B 

 

Fig. S4. Pair distribution function of α-B. The first shell B-B distance ranges from 1.67 to 2.01 Å. 

 

 

 

 

 

 

 

 



� ���

3. Parameters for structural descriptors in set-1. 
Table S5. Parameters of the angular structural descriptors G4 (see Eq. 4 in main text) used to describe the atomic environment. 
rc is cutoff radius, h, z and l are adjustable parameters. 

No. rc 
(Å) 

h 
(Å-2) l z No. rc 

(Å) 
h 

(Å-2) l z 

1 2.6 0.0500 2 1 4 3.7 0.0028 4 -1 
2 2.6 0.1000 4 -1 5 6.0 0.0140 6 -1 
3 3.7 0.0028 8 1 6 6.0 0.0140 4 1 

 

Table S6. Parameters of the angular structural descriptors S1 (see Eq. 6 in main text) used to describe the atomic environment. 
rc and n are cutoff radius and adjustable parameter, respectively.  

No. rc 
(Å) n No. rc 

(Å) n 

1 2.3 -1 13 2.9 24 
2 3.3 -2 14 3.7 24 
3 4.0 -2 15 4.0 24 
4 6.5 -2 16 2.0 1 
5 2.3 4 17 2.4 1 
6 5.5 4 18 2.8 2 
7 2.0 16 19 3.8 2 
8 2.3 16 20 4.0 2 
9 2.5 16 21 5.0 2 

10 3.7 16 22 5.8 2 
11 5.0 16 23 6.8 2 
12 6.0 16 - - - 

 

Table S7. Parameters of the radial structural descriptors S2 (see Eq. 7 in main text) used to describe the atomic environment. 
L is adjustable parameter. Also see Table S2 caption for explanations. 

No. rc 
(Å) L n No. rc 

(Å) L n 

1 2.2 2 6 6 3.5 -1 2 
2 2.2 2 4 7 6.0 4 6 
3 2.2 2 2 8 6.0 4 4 
4 3.5 -1 6 9 6.0 4 2 
5 3.5 -1 4 - -  - 

 

Table S8. Parameters of the angular structural descriptors S3 (see Eq. 8 in main text) used to describe the atomic environment. 
rc is the cutoff radius, n, m, z and l are adjustable parameters. 

No. rc 
(Å) n m z l No. rc 

(Å) n m z l 

1 2.2 -1 16 8 1 4 3.2 -2 16 8 -1 
2 2.4 -2 16 8 -1 5 3.6 -2 16 8 -1 
3 2.8 -2 16 8 1 6 4.0 -2 16 8 1 

 

Table S9. Parameters of the angular structural descriptors S4 (see Eq. 9 in main text) used to describe the atomic environment. 
p is the adjustable parameter. Also see Table S4 caption for explanations. 

No. rc 
(Å) n m p z l No. rc 

(Å) n m p z l 

1 2.1 16 16 16 4 1 11 6.7 16 16 1 4 1 
2 2.1 16 16 16 4 -1 12 6.7 16 16 1 4 -1 
3 3.7 16 16 16 4 1 13 3.2 1 1 4 4 -1 
4 3.7 16 16 16 4 -1 14 3.2 1 1 4 4 1 
5 6.7 16 16 16 4 1 15 5.2 1 1 4 4 -1 
6 6.7 16 16 16 4 -1 16 5.2 1 1 4 4 1 
7 2.2 16 16 1 4 1 17 3.2 1 16 4 4 -1 
8 2.3 16 16 1 4 -1 18 3.2 1 16 4 4 1 
9 4.0 16 16 1 4 1 19 5.2 1 16 4 4 -1 
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4. Parameters for structural descriptors in final NN PES 
Table S10. Parameters of the radial structural descriptors S1 used to describe the atomic environment. Also see Table S2 caption 
for explanations. 

No. rc 
(Å) n No. rc 

(Å) n 

1 1.9 0 21 3.4 16 
2 2.2 0 22 3.9 2 
3 1.8 16 23 4.4 2 
4 2.1 16 24 4.9 2 
5 1.6 8 25 5.4 2 
6 1.9 8 26 5.9 2 
7 2.2 8 27 6.4 2 
8 1.6 2 28 3.9 8 
9 1.9 2 29 4.4 8 

10 2.2 2 30 4.9 8 
11 2.6 2 31 5.4 8 
12 2.9 2 32 5.9 8 
13 3.4 2 33 6.4 8 
14 2.2 -3 34 3.9 16 
15 2.6 -3 35 4.4 16 
16 2.9 -3 36 4.9 16 
17 3.4 -3 37 5.4 16 
18 2.2 16 38 5.9 16 
19 2.6 16 39 6.4 16 
20 2.9 16 - - - 

Table S11. Parameters of the radial structural descriptors S2 used to describe the atomic environment. Also see Table S3 caption 
for explanations. 

No. rc 
(Å) L n No. rc 

(Å) L n 

1 1.7 2 6 19 4.1 2 2 
2 1.7 8 6 20 4.6 2 6 
3 1.8 2 4 21 5.1 2 2 
4 2.1 2 4 22 5.7 2 6 
5 2.4 2 4 23 6.2 2 2 
6 2.7 2 4 24 6.7 2 6 
7 3.0 2 4 25 1.8 8 2 
8 3.6 2 4 26 2.1 8 6 
9 4.1 2 4 27 2.4 8 2 

10 4.6 2 4 28 2.7 8 6 
11 5.1 2 4 29 3.0 8 2 
12 5.7 2 4 30 3.6 8 6 
13 1.8 2 2 31 4.1 8 2 
14 2.1 2 6 32 4.6 8 6 
15 2.4 2 2 33 5.1 8 2 
16 2.7 2 6 34 5.7 8 6 
17 3.0 2 2 35 6.2 8 2 
18 3.6 2 6 36 6.7 8 6 

 

 

 

Table S12. Parameters of the angular structural descriptors S3 used to describe the atomic environment. Also see Table S4 
caption for explanations. 

No. rc 
(Å) n m z l No. rc 

(Å) n m z l 

1 1.8 2 8 8 -1 9 3.2 2 8 8 1 
2 1.9 2 16 16 -1 10 3.2 2 8 8 -1 
3 2.0 2 8 8 1 11 4.4 2 8 8 1 
4 2.0 2 8 8 -1 12 4.4 2 8 8 -1 
5 2.2 2 2 4 1 13 2.2 -3 8 8 1 
6 2.2 2 2 4 -1 14 2.2 -3 8 8 -1 
7 6.4 2 2 4 1 15 3.4 -3 8 8 1 
8 6.4 2 2 4 -1 16 3.4 -3 8 8 -1 
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Table S13. Parameters of the angular structural descriptors S4 used to describe the atomic environment. Also see Table S5 
caption for explanations. 

No. rc 
(Å) n m p z l No. rc 

(Å) n m p z l 

1 2.2 4 16 16 4 1 27 2.2 2 16 16 4 1 
2 2.2 4 16 16 4 -1 28 2.2 2 16 16 4 -1 
3 2.4 4 16 16 4 1 29 2.4 2 16 16 4 1 
4 2.4 4 16 16 4 -1 30 2.4 2 16 16 4 -1 
5 2.6 4 2 2 4 1 31 2.6 2 2 2 4 1 
6 2.6 4 2 2 4 -1 32 2.6 2 2 2 4 -1 
7 2.8 4 2 8 4 1 33 2.8 2 2 8 4 1 
8 2.8 4 2 8 4 -1 34 2.8 2 2 8 4 -1 
9 3.0 4 2 2 4 1 35 3.0 2 2 2 4 1 

10 3.0 4 2 2 4 -1 36 3.0 2 2 2 4 -1 
11 3.2 4 2 8 4 1 37 3.2 2 2 8 4 1 
12 3.2 4 2 8 4 -1 38 3.2 2 2 8 4 -1 
13 3.5 4 2 4 4 1 39 3.5 2 2 4 4 1 
14 3.5 4 4 4 4 -1 40 3.5 2 4 4 4 -1 
15 3.8 4 -3 4 4 1 41 3.8 2 -3 4 4 1 
16 3.8 4 -3 4 4 -1 42 3.8 2 -3 4 4 -1 
17 4.2 4 2 4 12 1 43 4.2 2 2 4 12 1 
18 4.2 4 8 4 4 -1 44 4.2 2 8 4 4 -1 
19 5.0 4 4 4 6 1 45 5.0 2 4 4 6 1 
20 5.0 4 2 4 4 -1 46 5.0 2 2 4 4 -1 
21 5.7 4 2 4 4 1 47 5.7 2 2 4 4 1 
22 5.7 4 4 4 4 -1 48 5.7 2 4 4 4 -1 
23 6.0 4 2 16 4 1 49 6.0 2 2 16 4 1 
24 6.0 4 4 16 4 -1 50 6.0 2 4 16 4 -1 
25 6.4 4 4 4 4 1 51 6.4 2 4 4 4 1 
26 6.4 4 8 4 4 -1 52 6.4 2 8 4 4 -1 

 

Table S14. Parameters of the angular structural descriptors S5 (see Eq. 10 in main text) used to describe the atomic environment. 
m and p are adjustable parameters. Also see Table S3 caption for explanations. 

No. rc 
(Å) L n m p No. rc 

(Å) L n m p 

1 2.2 4 2 2 2 10 2.6 6 2 8 8 
2 2.2 4 2 2 2 11 3.2 2 2 2 2 
3 2.4 4 2 2 2 12 3.2 6 2 2 2 
4 2.4 4 2 2 2 13 4.8 2 2 2 2 
5 2.2 2 2 2 2 14 4.8 6 2 2 2 
6 2.2 6 2 2 2 15 3.2 2 2 4 8 
7 2.4 2 2 2 2 16 3.2 6 2 4 8 
8 2.4 6 2 2 2 17 4.8 2 2 4 8 
9 2.6 2 2 8 8 18 4.8 6 2 4 8 

 
 

Table S15. Parameters of the angular structural descriptors S6 (see Eq. 11 in main text) used to describe the atomic environment. 
Also see Table S5 caption for explanations. 

No. rc 
(Å) n m p z l No. rc 

(Å) n m p z l 

1 1.9 2 8 8 4 1 7 2.8 2 2 -2 4 1 
2 1.9 2 8 8 4 -1 8 2.8 2 2 -2 4 -1 
3 2.2 2 2 8 4 1 9 3.2 2 2 2 8 1 
4 2.2 2 2 8 4 -1 10 3.2 2 2 2 8 -1 
5 2.2 2 2 2 8 1 11 4.2 2 2 2 8 1 
6 2.2 2 2 2 8 -1 12 4.2 2 2 2 8 -1 
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5. Phonon and free energy calculation 
The phonon frequencies of the transition states are determined based on the numerical finite difference approach, 

employing the PHONOPY package13. For that, the size of the system was keep rhombohedral unit cell (1×1×1, 106/107-atom 
per cell) with the (8×8×8) Monkhorst-Pack mesh. With a displacement of ±0.01 Å of nonequivalent atoms, a set of displaced 
supercells was generated. For each minimum, the number of displaced cells is 636 (=106×6) for 106-atom cell and 642 
(=107×6) for 107-atom cell. For each displaced cell, the DFT calculations were performed to obtain the force on each atom 
due to the displacements. These forces were carried back to the PHONOPY to calculate the phonon dispersion curves. 
Helmholtz free energy (F), entropy of vibration (S), and zero-point energy (ZPE) at finite temperature can be obtained from 
phonon spectra based on quasi-harmonic approximation. At a given temperature the lowest value of the free energy determines 
the stable phase. The free energy of the crystal is a sum of a ground state energy and the free energy contribution from the 
lattice vibrations. The first term is directly obtained from DFT calculation, i.e. at T=0 K. The second one is temperature 
dependent and in the harmonic approximation it is calculated from the phonon density of states using the following equation,  

d̂\Ze = fghi j k
l

m
no 2pqoℎ

ℏk
2ghi

tk 

where r is the number of degree of freedom in a primitive unit cell, k denotes the phonon frequency, g(k) denotes the density 
of phonon states (DOS), ℏ is the Planck constant, and kB	is the Boltzmann constant. In this approach the thermal expansion 
of crystal is neglected. 
 

References 

13. A. Togo, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 134106. 
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6. Convergence of occupancy rates with respect to number of minima 
 The occupancy rates are calculated according to Eq.12-13 in the main text. To examine the numerical convergence in 
calculating POS occupancy, we have calculated the occupancy rates by using the top 100, 200 and 300 minima structures in 
the partition function summation. As shown in Table S16, the occupancy rates differ by no more than 0.1% for these results. 
Therefore, the numerical convergence for POS occupancy calculated from boron global PES is achieved with the 100~300 
lowest energy structures. 
 
Table S16. Occupancy rates for POSs from DFT and NN at different temperatures (1000, 1500 and 2000 K) and considered 
different number of structures (Nstr).  

 Nstr B13 B16 B17 B18 B19 B20 Res� 
1000K         

NN 100 68.3  29.5  15.0  15.0  1.5  1.2  0.5  
NN 200 68.3  29.5  15.0  15.0  1.5  1.2  0.5  
NN 300 68.3  29.4  15.0  15.0  1.5  1.2  0.5  
DFT 100 70.1  26.8  13.2  13.2  1.6  2.4  0.6  
DFT 200 70.1  26.8  13.2  13.2  1.6  2.4  0.6  
DFT 300 70.1  26.8  13.2  13.2  1.6  2.4  0.6  

         
1500K         

NN 100 71.9  23.7  11.5  11.5  4.7  2.2  2.1  
NN 200 71.8  23.4  11.5  11.5  4.6  2.2  2.0  
NN 300 71.8  23.3  11.6  11.5  4.6  2.3  2.0  
DFT 100 73.2  22.8  10.1  10.1  4.6  2.8  2.3  
DFT 200 73.2  22.8  10.1  10.1  4.6  2.8  2.3  
DFT 300 73.2  22.8  10.1  10.1  4.6  2.8  2.3  

         
2000K         

NN 100 74.4  20.7  8.9  8.9  7.0  2.3  3.2  
NN 200 74.2  20.4  9.1  9.1  6.8  2.4  3.2  
NN 300 74.1  20.2  9.1  9.1  6.8  2.4  3.2  
DFT 100 75.0  20.8  8.2  8.2  6.7  2.7  3.7  
DFT 200 75.0  20.7  8.2  8.1  6.7  2.7  3.7  
DFT 300 75.0  20.7  8.1  8.1  6.7  2.7  3.7  

�: residual atoms with unknown location 
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7. Electronic analyses of b-I-15 

 
Fig. S5. (a) Projected density of states (pDOS) of the filling B16 (blue ball) and B19 (orange ball) 2p orbital in b-I-15. The 
energy zero is set as valence band maximum (VBM). The center of B16 2p band occurs at -6.35eV below VBM, while that of 
B19 is at -6.02 eV below VBM. (b) The charge density (the square of wavefuntion) contour plot for the selected state at energy 
-10.84 (marked as red dotted line in (a)), i.e. the first major bonding peak for B16 and B19. Both the charge density are 
delocalized around the B16/B19 and also nearby atoms in B12 (red balls) or B28 (green balls) cages, which illustrates the the 
multi-center bonding for the doping B16/B19 atoms.  

  


