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The potential energy surface (PES) calculation is the bottleneck
for modern material simulation. The high-dimensional neural
network (HDNN) technique emerged recently appears to be a
problem solver for fast and accurate PES computation. The
major cost of the HDNN lies at the computation of the struc-
tural descriptors that capture the geometrical environment of
atoms. Here, we introduce a massive parallelization strategy
optimized for our recently developed power-type structural

descriptor. The method involves three-levels: from the top to
the bottom the parallelization is over atoms first, then, over
structural descriptors and finally over the n-body functions. We
illustrate the parallelization method in a boron crystal system
and show that the parallelization efficiency is maximally 100%,
58%, and 34% at each level. © 2018 Wiley Periodicals, Inc.

DOI:10.1002/jcc.25636

Introduction

Recent years have seen rapid development of high dimensional
neural network (HDNN) technique originally proposed by Belher
and Parrinello for constructing the potential energy surface
(PES) of complex materials.[1,2] The HDNN has demonstrated its
great potential for evaluating PES with a high accuracy (compa-
rable to the first principles calculations) and low computational
cost, for example, four orders of magnitude times faster as
reported recently.[3,4] The computation costs of HDNN involve
mainly two parts. (i) the numerical computation of complex
functions, known as structural descriptors (SDs), that are used
to describe the geometry and thus discriminate different struc-
tures; (ii) the evaluation of NN. As the part (i) is often the bottle-
neck for large-scale HDNN simulations, it is critical for
developing new methods to reduce the cost of SD computa-
tion, in particular by improving the parallel efficiency.

The SD is the key element to establish the correlation
between a structure and its energy. Through years, many differ-
ent SDs have been developed, for example, extended-
connectivity fingerprint,[5] Coulomb matrix,[6–9] graph
convolution,[10,11] and symmetry function.[1,2] Paradoxically, with
the increase of the ability of SD for describing complex PES, the
function forms become more complicated and, thus, more
computational demanding. What is even worse, the paralleliza-
tion solution for speeding up SD remains to be a field not
explored and no standard and efficient algorithm is available.
Conversely, the evaluation of NN has been well studied in com-
puter science and a number of highly efficient commercial
packages for CPU and GPU, such as TensorFlow, Caffe, and
MXNet[12,13] are available on market. These methods can utilize
thousands of GPU cores to speed up the activation function
computation in hundreds of neurons. Considering of these, to
develop efficient parallelization algorithm for SD computation is
an urgent task for the upcoming HDNN applications.

As one of the most sophisticated but also successful SD,
Belher-type SDs[1,2] utilizes the Gaussian functions and trigomi-
cal function for describing the two-body and three-body inter-
actions, which has a great similarity with the energy functions

involving bond distance and bond angles utilized in traditional
empirical potentials.[14] Our recent work[15] shows that Belher-
type SDs may still not be enough for describing highly complex
covalent bonded systems, such as Boron solid. Instead, we have
developed a new series of SD, that is, power-type structural
descriptors (PTSD). By utilizing the PTSD, the NN potential for
boron global PES manages to reach the RMS accuracy of
12 meV/atom in energy.[15]

In this work, we focus on the parallelization scheme of PTSD.
A three-level stradegy based on message passing interface
(MPI) is designed to distribute the computational task into
thousands of processors as even as possible. Depending on the
number of atoms in system and the available processors, the
parallelization scheme may choose to over atom or over PTSD.
Only when the number of processors exceed the number of
atoms, we split different PTSDs into different processors accord-
ing to the estimated computational cost of each PTSD. The eff-
ciency of the current method is illustrated finally in boron
solids examples.

A Brief Introduction of HDNN and PTSD

Before describing our parallelization strategy, we first briefly
outline the HDNN architecture. Figure 1 shows that in HDNN
the total energy of a system is a sum of independent atomic
energy. The computation of each atomic energy requires the
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calculation of the SDs of the associated atom followed by the
standard feedforward-backpropagation NN evaluation. The SDs
serve as the input layer of NN. For the PTSD, there are six types,
namely S1 to S6 and they have the following mathematic forms
(more details can be found in the Ref. [15].)
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Each PTSD can be considered as a sum of the n-body func-
tions, named as the group unit (GU), also see Figure 1. The
power function Rn(rij) represents the radial function in the
GU. In the equations, rij is the distance of all atomic pairs, rc is
the cutoff, beyond which the value of eq. 1 is equal to zero,
YLm(rik) is the spherical harmonic function, and n, m, p, λ, and ζ

are power parameters. Depending on the functional form of

GU, the PTSD S1i , S2i , S
3
i , S4i , S5i , and S6i can be considered as

2-body, 3-body, and 4-body functions, respectively, where the
S2i and S5i involve also the spherical function.

Because the exact functional form differs, the computational
cost of different type of PTSD in real systems is in fact very differ-
ent. In Table 1, we show the typical cpu time for S1 to S6 PTSDs
at three different cutoffs (rc) from 2.0 to 6.0 in a boron crystal.
With the increase of cutoffs, the number of group units (ngu) for
PTSD may also increase (more neighbors are included). All cpu
time is relative to a GU computation time of S1 (T01) (on a single
CPU it takes around 0.0016 s.). As shown, the T0xfor six PTSD
types S1–S6, follows the order T01<T04<T03<T06<T02<T05. Obvi-
ously, with the increase of n, the computation of n-body func-
tions becomes generally more expensive; the S2 and S5 type
PTSD with spherical functions have the largest T0.

The Tdi, the time to compute an ith PTSD with a type Sx, can
then be derived as the unit time of Sx (T0x) multiplying the num-
ber of group units (ngu), that is, Tdi = ngu × T0x. For the boron
crystal, Td at different cutoffs are also compared in Table 1. In
general, those related to the 4-body type are the slowest, fol-
lowed by the 3-body types and 2-body types. This is mainly due
to the rapid increase of ngu from 2-body to 3-body and to
4-body PTSD. For the most expensive 4-body type S6, the ngu is
typically an order of magnitude larger than that of the other
types at the same cutoff. It is noted that although T0 of S2 type
is high, the ngu of S2 type is small, making S2 a relatively cheap
PTSD type despite the computation of spherical function.

Parallel Computation Strategy of PTSD-Based
HDNN Potential

Considering that each atom has a similar set of PTSDs and differ-
ent PTSDs may have very different computational cost
(as measured by Tdi), we design a three-level parallelization
scheme, which corresponds to the hierarchy architecture in
HDNN computation shown in Figure 1, namely (i) A-para, atomic
parallelization, (ii) D-para, PTSD parallelization, and (iii) G-para,
GU parallelization. The purpose of the three-level parallelization
scheme is to minimize the communication among processors
and to load each processor as equally as possible that reduces
the waiting time of processor. These two are essential for achiev-
ing a high parallel efficiency under the MPI framework.

Figure 1. Scheme of the computation hierarchy in the PTSD-based HDNN.
The total energy of a system (blue) is a sum over all atomic energy (green).
The atomic energy involves descriptor computation (orange) and an NN
evaluation (white). The descriptor computation includes contributions from
each n-body function (group unit) computation (red). [Color figure can be
viewed at wileyonlinelibrary.com]

Table 1. Typical computational cost of each type of PTSD

Type T0[a]

Td[b]

rc = 2.0 rc = 4.0 rc = 6.0

S1 1 12 78 248
S2 10 125 811 3 × 103

S3 2 152 7 × 103 7 × 104

S4 3 79 4 × 103 5 × 104

S5 17 406 2 × 104 2 × 105

S6 5 1 × 103 3 × 105 1 × 107

[a] The relative time to compute a GU involved in each PTSD. The T0 of S1 (T01) is set
to be the unity.
[b] The typical time to compute each type of PTSD at different cutoff value.
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In our implementation, the three-level parallelization can be
selected automatically during the simulation. Because each atom
has a similar set of PTSDs, the computational cost for each atom
is similar and the A-para should be chosen preferentially. This can
be done by comparing the number of atoms in system, na, with
the number of processors, Np. As long as Np ≤ na, the A-para will
be selected. This is shown schematically in the left-hand side of
the flow chart in Figure 2, as explained in the following.

A-para scheme

The atom parallelization is natural to HDNN framework and thus
technically simple in implementation. There are three basic steps.

� A-1. Distribute atoms to processors. Each processor
needs to compute na/Np atoms.

� A-2. Compute the atomic energy of each atom in
one processor using HDNN. This involves the compu-
tation of PTSDs and NN evaluations in one processor.

� A-3. Sum up the atomic energies/forces computed in
the same processor.

Conversely, if the number of processors Np exceeds the num-
ber of atoms, each atom can be assigned to multiple processors
and the D-para scheme will be invoked to compute each atom,
which means that every processor computes only a fraction of
PTSDs of an atom. The G-para is carried out only for the PTSDs
of high computational cost and such a high cost PTSD will be
distributed over a few processors, each computing a fraction of
GUs of the PTSD, as illustrated by the right-hand side of the
flow chart in Figure 2.

In the D-para and G-para, a number of Nsubp = Np/na proces-
sors is first allocated to every atom. Then, the computation time
of each PTSD (Tdi) is estimated according to Table 1, and the
average execution time of one processor (t) can be derived as

t =
P

Tdi/Nsubp, being the sum of the estimated computational
time Tdi for each PTSD divided by Nsubp. In Figure 3a, we illus-
trate the computation time of each PTSD (Tdi) using rectangular
box that varies in size from one to another (one box represents a
PTSD), and the average time for processors using color bar that
has the same length (one individual color bar represents one
processor). One simple way of distributing the computational
task would be keeping each processor loading as t, and splitting
the GUs of PTSDs to multiple processors (as shown in Fig. 3a).
Apparently, in the simple distribution, the loading of processor is
even, but there is a significant cost in the data communication
between processors to exchange GU values. To overcome this
problem, we have designed three rules to assign PTSDs into pro-
cessors to balance the processor loading and communication
cost between processors. The algorithm is described as follows.

Starting from the first PTSD ( j = 1) and the first processor
(n = 1), the accumulated PTSD computing time Taj for the j PTSD
and the accumulated processor execution time tan at the
n processor [eqs. 9 and 10] are evaluated sequentially until the
final PTSD is reached.

Taj ¼
Xj

i¼1

Tdi , ð9Þ

tan ¼ n× t, ð10Þ

If Taj < tan, it indicates the n processors can finish j PTSDs.
We continue to compute eq. 9 by incrementing j = j + 1. If
Taj > tan, three rules are used to make decision how to distrib-
ute the jth PTSD, for example, whether the G-para strategy is
used to compute the jth PTSD. These rules are illustrated in
Figure 3 and explained in the following.

� Rule 1: If Taj exceeds the expected execution time of
processor by less than the minimum value of t/2 and

Figure 2. Flow chat of PTSD-based HDNN
parallelization under the MPI framework.
[Color figure can be viewed at
wileyonlinelibrary.com]
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Tdj/2, the jth PTSD is assigned totally to the current
n processor. As the result of Rule 1, the actual execu-
tion time of the current processor (e.g., red bar in
Fig. 3i) will be elongated. After the assignment, we
let j = j + 1 and n = n + 1.

� Rule 2: If Tajexceeds the expected execution time of
processor by more than t/2 or Tdj/2, the jth PTSD is
assigned to the next processor (yellow bar, in Fig. 3ii)
by increasing the processor count n (n = n + 1, the
yellow bar becomes the current processor). As a
result of Rule 2, the actual execution time of the pre-
vious processor (orange bar) is reduced. After the
assignment, we let j = j + 1.

� Rule 3: If Taj exceeds the expected execution time of
processor by more than 1.5 × t, suggesting it can be
computed by multiple processors, the G-para strategy
is invoked and the GUs of the jth PTSD are evenly dis-
tributed to the subsequent processors by increasing
continuously the processor count n until Rule 3 breaks
(n = n + k). The processor n is allocated to the jth
PTSD only if its remaining expected execution time of
processor (Taj -tan) is larger than t/2. For example, in
Figure 3iii where the processor n is not allocated to
jth PTSD, the box ( jth PTSD) overlaps mainly with the
green, cyan bars, and only slightly with the yellow/
blue bar. As a result of Rule 3, the green and cyan bars
are allocated to jth PTSDs. In Figure 3iv where the pro-
cessor n is allocated to jth PTSD, the box ( jth PTSD)
overlaps largely with the last three bars. Hence, the
blue, purple, and gray bars are allocated to jth PTSDs.
After the assignment, we let j = j + 1.

Overall, the D-para and G-para schemes are summarized as
follows.

D-para and G-para schemes

The SD parallelization is chosen if Np is larger than na.

� D-1. Distribute processors to atoms. Each atom will
be computed by Nsubp = Np/na processors.

� D-2. Count the number of GUs (ngu) for all the PTSDs
of the atom in parallel over Nsubp processors.

� D-3. Estimate the average execution time (t) for each
processor, t =

P
Tdi/Nsubp.

� D-4. Assign PTSDs to processors according to three
assignment rules (Rule 1–3 above). If G-para is
invoked, continue to G-1, otherwise to D-5.

� G-1. Assign Ngup = Tdi/t processors to compute the
PTSD, and each processor is assigned with ngui/
Ngup GUs.

� G-2. Calculate the GU contributions to the PTSD on
each processor.

� G-3. Collect GU contributions from each processor
and evaluate the PTSD.

� D-5. Collect all PTSDs from Nsubp processors and eval-
uate the atomic energy/forces using HDNN.

Benchmarks
Parallel efficiency

We use Boron crystals as an example to test our parallelization
strategy (Fig. 4). For the testing purpose, the crystal used is a
three-dimensional buckled honeycomb structure.[16] Each lattice
contains four atoms with exactly the same chemical environ-
ment (Fig. 4a), thus, the same computational cost in HDNN
evaluations. Our boron NN potential is taken from the previous
work,[15] which were generated from the global optimization of
various boron structures, ranging from bulk to layer and to clus-
ters. The input layer of boron NN potential contains 173 PTSDs,
which contain 39 S1, 36 S2, 16 S3, 52 S4, 18 S5, and 12 S6. To
test the parallel efficiency at three different levels, boron crys-
tals used have different sizes, that is, 4, 28, 140, and 560 atoms
per cell. All NN calculations run on a same 560-core cluster
(28 core/node × 20 nodes, Intel Xeon E5-2695 v3 CPU).

We also compared our NN calculations with first principles
calculations using VASP[17,18] on the parallel efficiency. In VASP
calculations, the kinetic energy cutoff was 450 eV, and the pro-
jector augmented wave (PAW) pseudopotential[19] was utilized
to describe ionic core electron. The exchange-correlation

Figure 3. Schematic illustration of the PTSD parallel computation scheme. a) Simple distribution with equal loading (the same cpu time t) on each processor
but the computation of PTSDs are split into multiple processors. Each color bar represents the loading of a processor. A black box represents the required
cpu time for computing a PTSD. i–iv) are schematic illustration of three PTSD assignment rules, where the shaded bar represents the loading of the processor
that needs to be modified. b) Optimal distribution with minimum communication among processors according to the three assignment rules. [Color figure
can be viewed at wileyonlinelibrary.com]
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functional for DFT was GGA-PBE functional. The first Brillion
zone k-point sampling utilizes an automated Monkhorst–Pack
scheme[20] with the mesh determined by 20 times of the recip-
rocal lattice vectors.

The parallel efficiency for NN calculations and DFT calculations
are compared in Figure 4a. The benchmark system is a single-
point energy calculation of a 28-atom crystal. For NN, the
computing time is 1.5, 0.4, and 0.07 s on 1, 4, and 28 processors,
respectively. For DFT, it is 135, 41, and 13 s, respectively. As a
result, over 28 processors NN is 200 times faster than the DFT and
the corresponding parallel efficiency are 81% for NN and 36% for
DFT. The speed-up on 28 cores is basically the maximum speed-
up for DFT computation of this system, however, as we will show
in below, the NN can run even faster with more processors.

To examine our parallel strategy in detail, we have run a
series of calculations on maximum 560 processors for crystals
containing 4, 28, 140, and 560 atoms per cell. The results are
shown in Figures 4b and 4c. For the 4-atom crystal, the maxi-
mum speed-up is 60, achieved over 280 processors (Fig. 4b),
which indicates a high parallelization ability of NN calculations:
70 processors for each atomic energy computation. For systems
containing 28, 140, and 560 atoms the maximum speed-up is
162, 285, 411, respectively, all achieved over 560 processors
(Fig. 4b). It suggests that a higher speed-up is expected for
these large systems if more processors are available.

We also note that the four curves in Figure 4b exhibit quite dif-
ferent slopes that also depend on the number of processors. This
is apparently due to the different performance of three levels of
parallelization and can be better understood from the analyses in
Figure 4c. The A-para has the highest parallel efficiency,

performed for all systems when Np ≤ na (yellow region in Fig. 4c),
for example, 73% for 560-atoms over 560 processors and 98% for
4-atoms over 4 processors. This leads to a largely linear scaling for
the 560-atom system over 560 processors (the red curve in
Fig. 4b).

For 140-atom, 28-atom, and 4-atom systems, the D-para is also
involved when na < Np < 17 × na (illustrated as the orange region
in Fig. 4c for 4-atom system). The D-para exhibits the medium par-
allel efficiency, for example, 58% over 8 processors and 39% over
56 processors for 4-atom system. The green curve in Figure 4b,
corresponding to the 140-atom system, flats in between 140 and
280 processors due to the switch from A-para to D-para.

For 28-atom and 4-atom systems, the G-para is also involved
when Np ≥ 17 × na (illustrated as the cyan region in Fig. 4c for
4-atom system). As expected, the parallel efficiency of G-para is
the lowest in three levels, being 34% over 112 processors and
21% over 280 processors for the 4-atom system (Fig. 4c).

The above results show that the D-para has a much poorer
parallel efficiency compared to the A-para. Compared to the A-
para, the D-para has the additional communication cost in dis-
tributing and collecting the information between PTSDs among
Nsubp processors. Conversely, the switch-on of the G-para does
not reduce obviously the parallel efficiency compared to that of
the D-para. This is illustrated in Figure 4c, where the blue curve
follows almost the same slope when crossing from the orange
to cyan region. It indicates that the communication between
the GUs computations as involved in the G-para for the most
expensive PTSDs is in fact not the rate-determining step and
the overall cost of parallelization is still dominated by the
D-para.

Figure 4. a) Comparison of the computation
time for a 28-atom Boron crystal using NN
and DFT with plane wave basis set (PW DFT).
The x axis is the logarithm of time in the unit
of seconds. The insert shows the structure of
the boron crystal. b) Speed-up of HDNN
computation of boron crystals. The x axis (Np)
is the number of processors and the y axis is
the speed-up. c) Parallel efficiency of HDNN
computation of boron crystals. The yellow,
orange, and cyan background represent
three-level parallelization using A-para, D-
para, and G-para, respectively. d) MD
trajectory of a 1120-atom Boron crystal in the
microcanonical (NVE) ensemble by
highlighting the potential energy (Epot) and
the conserved total energy (Etot). The stepsize
is 1 fs. [Color figure can be viewed at
wileyonlinelibrary.com]
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Long time MD simulation

Finally, we have performed a molecular dynamics simulation of
a 1120-atom crystals in the micro canonical (NVE) ensemble for
0.1 ns on 560 cores with verlet algorithm. The initial tempera-
ture is 1000 K and the timestep is 1 fs. The neighbor list is
updated every timestep and, thus, the parallelization scheme is
determined every timestep. The simulation trajectory is shown
in Figure 4d. The total energy conserves well in the 0.1 ns simu-
lation, suggesting the numerical stability of the current paralleli-
zation method. The simulation takes 6 h and 17 min in total.
We estimate that it requires more than 1.2 × 104 h if the same
job is performed using DFT.

Conclusions

In summary, we have introduced a parallelization strategy for
HDNN computation with the newly developed PTSD as the
input layer. The parallelization framework is designed to be
hierarchical with three-levels, namely over atoms (A-para), over
SDs (D-para), and over the n-body functions (G-para). Such an
implementation can achieve linear scaling of the computational
cost for large systems with thousands of atoms, where the com-
munication cost between processors is maximally reduced.

Using Boron solids as examples, we show that this parallel
strategy can gain a high speed up on at maximum 70 proces-
sors per atom. The highest speed-up is 411 for a 560-atom crys-
tal using A-para; 284.5 for a 140-atom crystal using D-para;
161.7 for a 28-atom crystal and 60 for a 4 atom crystal using
G-para.
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