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ABSTRACT
Modern research on heterogeneous catalysis calls for new techniques and methods to resolve the active site structure and reaction intermedi-
ates at the atomic scale. Here, we overview our recent progress on large-scale atomistic simulation via potential energy surface (PES) global
optimization based on neural network (NN) potential, focusing on methodology details and recent applications on catalysis. The combina-
tion of stochastic surface walking (SSW) global optimization and the NN method provides a convenient and automated way to generate the
transferable and robust NN potential for global PES, which can be utilized to reveal new chemistry from the unknown region of PES with an
affordable computational cost. The predictive power of SSW-NN is demonstrated in several examples, where the method is applied to explore
the material crystal phases, to follow the surface structure evolution under high pressure hydrogen and to determine the ternary oxide phase
diagram. The limitations and future directions to develop the SSW-NN method are also discussed.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5113673., s

I. INTRODUCTION

Heterogeneous catalysts are renowned for their great complex-
ity of material composition and surface structures. There has been
a long history for both experiment and theory in the struggle to
resolve the active site of catalysts that are responsible for activity
and selectivity.1–4 The latest progress in experiments are represented
by high spatial resolution techniques, e.g., the spherical aberration-
corrected high-resolution transmission electron microscope, and
synchrotron-based measurements, e.g., extended X-ray absorption
fine structure. On the other hand, as a direct tool to correlate the
atomic structure with its energy, theoretical simulations have been
widely practiced in modeling catalyst structures and even predict-
ing the activity, especially with the advent of density functional
theory (DFT) calculations.5 However, DFT simulation is generally
limited to hundreds of atoms and thus fails to explore exhaustively
the phase space of complex catalysts, such as amorphous structures,
multicomponent oxide/alloys.6–8

To identify the active site of catalysts from theory, it is essential
to explore the potential energy surface (PES) of exposed surfaces.

This requires not only a fast and reliable approach to evaluate the
energetics of structures but also an efficient method to explore the
structural phase space. As for PES calculation methods, most are
based on quantum mechanics as represented by DFT calculations,
while the empirical force field calculations and more recently an
artificial neural network (NN)9 potential method (Fig. 1), despite
their limitation in transferability, are also often utilized in mate-
rial applications. Since catalytic conversion involves the chemical
bond making and breaking, DFT calculations have been the most
popular way to provide an accurate description of reactions with
reasonable computational cost. The computation speed of DFT is
sensitive to the complexity of the employed density-functional (e.g.,
PBE10 and HSE0611) and has a poor scaling [at least O(NlnN)]. It is
very difficult to explore the reaction network in large catalytic sys-
tems (e.g., >100 atoms). As a promising alternative, the NN poten-
tial method developed in the past decade demonstrates its power
in treating complex PES problems, from the gas phase reactions to
material dynamics.12–15 Recently, it was also utilized for solving the
structures of heterogeneous catalysts, for example, Pd(O),16 Pt(H),17
CuAu,18,19 CuCeO,20 and CuZnO.21 Unlike the traditional force field
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FIG. 1. Scheme of the SSW-NN. The total energy can be obtained from the NN
potential, which replaces the high cost procedure to solve the Schrödinger equa-
tion. The total energy of a system in the NN potential is a sum over all atomic
energy. The atomic energy involves power-type structural descriptor (PTSD) com-
putation (see Sec. II C 2) and a NN evaluation. The SSW global optimization is
utilized to explore the PES and produce new structures.

potentials, the NN potential is able to describe chemical reactions
with high accuracy as long as the training dataset contains the
reactive data, such as the transition state (TS).

In parallel to the progress in PES evaluation methods, many
PES exploration methods have been developed through the past
decades. As catalytic reactions and the structural reconstruction
occur generally above ambient temperatures involving high barrier
processes, traditional molecular dynamic (MD) simulation is often
not appropriate for active site identification. Instead, the global opti-
mization methods, which can overcome the high barrier on PES,
are desirable. The common global optimization methods include
simulated annealing,22 genetic algorithm,23 basin hopping,24 and
stochastic surface walking (SSW).25,26

This perspective serves to outline our recent contributions
in methodology development toward catalyst PES exploration and
active site identification. We will show that the combination of
the global NN potential with the SSW method, SSW-NN, provides
a powerful platform to resolve the catalyst structure which can
finally lead to the prediction of catalyst activity from first principles.
The SSW-NN method together with other common atomic simula-
tion techniques is now implemented in LASP software, Large-scale
Atomic Simulation with neural network Potential, which allows one,
within a user-friendly platform, to perform first principles calcula-
tions, NN potential generation, and atomic simulation using the NN
potential.27

II. SSW-NN METHOD

A. SSW method
The SSW algorithm25 is an unbiased global optimization

method that can explore both minima and saddle points on PES.

SSW implements an automated climbing mechanism to manipu-
late a structural configuration moving smoothly from a local mini-
mum to a high-energy configuration along one randommode direc-
tion. The method was initially developed for aperiodic systems,26
such as molecules and clusters, and has been extended to periodic
crystals.28

The SSW method inherits the idea of bias-potential driven
constrained-Broyden-dimer (BP-CBD) method for TS location. In
one particular SSW step, labeled as t, a modified PESVmod, as shown
in Eq. (1) and Fig. 1, is utilized for moving from the current min-
imum, R0

t , to a high energy configuration, RH
t (the climbing), in

which a series of bias Gaussian potential vn (n is the index of the
bias potential, n = 1, 2, . . ., H) is added one by one consecutively
along the direction Nn

t (Fig. 1),

Vmod = Vreal +
NG�
n=1 vn

= Vreal +�NG
n=1 wn ∗ exp[−��Rt − Rn

t � ⋅Nn
t �2�(2 × ds2)], (1)

where Rt is the coordination vector of the structure and Vreal rep-
resents the unmodified PES; Rn

t is the n-th local minima along
the movement trajectory on the modified PES that is created after
adding n Gaussian functions. The Gaussian function is controlled
by its height w and its width ds and is always added along one par-
ticular walking direction as defined by Nn. Once the RH

t is reached,
all bias potential are removed and local optimization is performed
to quench the structure to a new minimum. Different from the
BP-CBD method, each SSW step (from one minimum to another)
will choose a random direction to perturb the structure after the
direction is refined (softened) using the biased-CBD method. At
the end of the SSW step, a structure selection module, e.g., in the
Metropolis Monte Carlo scheme, is applied to accept/refuse the new
minimum.

B. High-dimensional NN architecture
The artificial NN method was first developed to understand

the signal processing in the brain.29 In the following decades, NN
evolves into a class of powerful algorithms applied to a variety of
fields from numerical prediction, pattern recognition to data clas-
sification. It is most renowned for the powerful ability to establish
the functional relationship between independent variables and target
(dependent) values via nonlinear “black box” data processing.

In 2007, Behler and Parrinello implemented the high-
dimensional NN (HDNN) architecture for material simulation,
which trains the first principles PES dataset to generate NN poten-
tial.30–32 In the approach, the total energy Etot of system is writ-
ten as the summation over all atoms [Eq. (2)] (see Fig. 1). Each
atom is represented by a standard feed-forward (FFNN), where the
input layer is a series of structural descriptors to describe the atom
bonding environment and the output layer yields the atomic energy
Ei (i indexes atoms),

Etot =�
i
Ei(R). (2)

The structural descriptors can, in principle, be any functional
forms of atomic coordinates.33–35 In their original work, Behler et al.
suggests a series of rotation-invariant symmetry functions as the
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structural descriptors, which are Gaussian type functions of intrin-
sic coordinates (pair distance, angles).30 The NN potential can be
trained by minimizing the cost function that measures the deviation
of the NN output with respect to the training set properties, e.g.,
total energy, force, and stress.36,37 The training set is a large struc-
ture dataset on PES with accurate energetics and forces, most often
computed from first principles calculations. More details on HDNN
can be found in previous reviews.35,38,39

C. SSW-NN

1. Self-learning procedure
Unlike classical force field potentials, the NN potential is gen-

erally found to have a limited predictability beyond the training
dataset, presumably due to the numerical function fitting by a large
number of parameters. The key to improve the quality of the NN
potential therefore relies much on the representativity of the PES
dataset. To overcome this deficiency of the NN potential, we pro-
pose in 2017 a global-to-global scheme to generate the global NN
(G-NN) potential for material simulation.37 This scheme combines
the SSW global optimization for data generation, the HDNN for PES
description, and a self-learning procedure17 to expand the dataset
and upgrade the NN potential, the so-called SSW-NN method. The
self-learning procedure of SSW-NN is described briefly as follows
(see Fig. 2).

The first stage constructs an initial dataset by performing in
parallel short-time SSW sampling based on first-principles DFT cal-
culations. These DFT calculations are often restricted to small sys-
tems (typically below 20 atoms) and with a low accuracy calculation
setup to speed up the global PES sampling. After the PES data are
obtained from SSW, a small dataset is randomly selected and com-
puted using DFT with a high accuracy calculation setup. This stage
produces a dataset with the most common atomic environment for
the target PES.

The second stage generates a NN potential using the current
first principles dataset. The key features of our NN potential will be
detailed in Subsection II C 2.

FIG. 2. Self-learning procedure of the global NN potential. The global dataset is first
generated using high accuracy DFT calculations, which is then trained to obtain
the global NN potential (G-NN). Then, an additional dataset is generated by SSW
sampling based on the G-NN potential. This additional dataset is then fed back
into the global dataset and a new cycle self-learning starts.

The third stage expands the dataset by carrying out long-time
SSW global PES sampling using the current NN potential. These
SSW-NN simulations start from a variety of initial structures with
different morphology, including bulk, surface, and clusters, differ-
ent chemical compositions, and different number of atoms per unit
cell. A small additional dataset is thus obtained from the SSW sam-
pling trajectories, containing the structures on PES either randomly
selected or exhibiting new atomic environment (e.g., out-of-bounds
in structural descriptor, unrealistic energy/force/curvature). After
calculating these additional data by DFT, they are added into the
training dataset and the whole self-learning procedure returns back
to the previous stage.

Typically, after ∼100 iterations, a robust and accurate NN
potential can be obtained with a compact training set that contains
the most representative structures. We emphasize that it is better to
adopt consistent and high accuracy calculation setups in construct-
ing the training dataset using first principles calculations, which can
benefit greatly the data transferability and compatibility between
systems and also help us to reduce the NN fitting error.

2. G-NN potential
Our G-NN potential utilizes our recently proposed power-

type structural descriptors (PTSDs)37 to distinguish different struc-
tures on PES. The general forms of the PTSD are described in the
following equations:37

fc(rij) = �0.5 × tanh3�1 − rij
rc
�

0 for rij > rc , for rij ≤ rc, (3)

Rn(rij) = rnij ⋅ fc(rij), (4)

S1i =�
j≠i R

n(rij), (5)

S2i =
������

L�
m=−L

������������j≠i R
n(rij)YLm(rij)�����������

2������
1
2

, (6)

S3i = 21−ζ �
j,k≠i
�1 + λ cos θijk�ζ ⋅ Rn(rij) ⋅ Rm(rik) ⋅ Rp�rjk�, (7)

S4i = 21−ζ �
j,k≠i
�1 + λ cos θijk�ζ ⋅ Rn(rij) ⋅ Rm(rik), (8)

S5i =
������

L�
m=−L

������������j,k≠i R
n(rij) ⋅ Rm(rik) ⋅ Rp�rjk�

⋅ (YLm(rij) + YLm(rik))
�����������
2������

1
2

, (9)

S6i = 21−ζ �
j,k,l≠i
�1 + λ cos δijkl�ζ ⋅ Rn(rij)Rm(rik)Rp(ril), (10)

where rij is the internuclear distance between atom i and j, θijk is the
angle centered at i atom with j and k being neighbors (i, j, and k
are atom indices). The key ingredients in PTSD are the cut-off func-
tion f c that decays to zero beyond the rc [Eq. (3)], power-type radial
function, trigonometric angular functions, and spherical harmonic
function.

In PTSD, the S1 and S2 are two-body functions, the S3, S4, and
S5 are three-body functions, and the S6 is a four-body function.
The replacement of the Gaussian-type structural descriptor which
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was proposed by Behler and Parrinello by the PTSD has several
advantages: (i) the computational cost in numerical calculations is
reduced; (ii) the adjustable parameters are reduced to one (n) that
simplifies the search for optimal parameters for two-body function;
(iii) the power function when combining with the decaying cut-off
function can create radial distributions with flexible peak and shape,
which fulfills the similar purpose of Gaussian function (see Fig. 3);
(iv) the introduction of different powers (n, m, and p) in the three-
body function can couple conveniently different radial distributions.
(v) The introduction of a spherical function greatly improves the
description of the angular environment of atoms.

Our G-NN potential typically has two to three hidden lay-
ers and 50–120 neurons for each layer, which leads to the num-
ber of network parameters (weights and bias in NN) in the range
of 104–106. The optimization of such a large parameter space is
achieved via the quasi-Newton Limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) method by simultaneously fitting the
total energy, force, and stress from first principles that constitutes
the cost function Jtot as follows:

Jtot = JE + ρJF + τJσ

= 1
2N
�ENN − Ereal�2 + ρ

6N
�FNN

k,α − Freal
k,α �2

+
τ
18
�σNNαβ − σrealαβ �2, (11)

where ρ = 1–10 and τ = 0.05–0.1. The training procedure is con-
trolled by a number of hyperparameters, such as the relative weight
among energy, force, and stress [1:ρ:τ in Eq. (11)], network weight
initialization method, type of neuron activation function, and train-
ing epochs.40,41 A prototype of these hyperparameters frequently
utilized is summarized in Table I. Due to the structural variety of
the global PES, the typical accuracy for G-NN is 5–10 meV/atom for

FIG. 3. Plots of the radial part of the PTSDs [Eq. (3)] with the same cutoff
radius of 3.2 Å but different power n. The x-axis is the distance r, while the y-
axis is the function value scaled to (0, 1). Reprinted with permission from Huang
et al., Chem. Sci. 9(46), 8644–8655 (2018). Copyright 2018 The Royal Society of
Chemistry.

TABLE I. A prototype of hyperparameters used in our previous works.

Hyper-parameters Values

Optimization method L-BFGS
Weight ratio 1:ρ:τ 1:5:0.05
Number of hidden layers 2–3
Neuron number in the input layer 100–400
Neuron number in each hidden layer 50–120
Weight initialization method Xavier initialization
Type of neuron activation function tanh3
Size of training data 20 000–100 000
Training epochs ∼20 000
Number of weights and bias 104–106

root mean square errors (RMSEs) of energy and 0.1–0.2 eV/Å for
RMSE of force.

III. APPLICATIONS

A. PES exploration
The thermodynamics and kinetics of materials are determined

by the underlying PES. SSW-NN simulation is such a convenient and
efficient tool to establish the global PES for materials. In the past sev-
eral years, we have mapped out the PESs for a number of systems,
e.g., single element crystal (boron),37 molecular crystal (ice),42 and
metal oxide (TiO2, ZnCr2O4).43,44 The PESs of TiO2 and ZnCr2O4
are projected onto a two-dimensional contour map, as shown in
Fig. 4, where the structural order parameter (OP) and the relative
energy are the x- and y-axis, respectively. The density of the map
represented by different colors indicates the density of states (DOS)
on PES, showing the energy degeneracy of structural configurations
at the same structuralOP.

TheOP is defined by the following equation:45

OPl = � 4π
2l + 1�l

m=−l� 1
Nbonds

�i≠j e−
rij−rc
2rc Ylm(n)�2�

1�2
, (12)

where Ylm is the spherical harmonic function of degree l and order
m; n is the normalized direction between all bonded atoms; i and j
are atoms in the lattice, rij is the distance between atom i and j, and rc
is set at 60% of the typical single bond length for i and j atoms.Nbonds
is the number of bonds. By choosing a suitable degree l, the order
parameter can measure the short- and medium-range ordering of
atoms in the lattice and thus distinguish important crystal struc-
tures and amorphous structures. For example, it is often straight-
forward to tell the coordination number from the OP value, e.g.,
six-coordinated Ti atom with OP2 = 0.3–0.5 and five-coordinated
Ti atom withOP2 = 0.6–0.8 in TiO2 PES.

As shown in Fig. 4, the PESs of the TiO2 and ZnCr2O4 shape
rather differently: TiO2 PES like a butterfly while ZnCr2O4 PES like a
funnel. At the bottom of the PES, where the low energy structures lie,
the TiO2 PES demonstrates that there are many energetically simi-
lar TiO2 crystal phases but with different structural patterns, having
multiple funnels in the butterfly shape. By contrast, ZnCr2O4 PES
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FIG. 4. Global PESs of TiO2 and ZnCr2O4 as determined from the SSW-NN global
search. The energy (eV/f.u.) of the most stable phase is set as reference zero. The
x axis is the common structure fingerprint for the crystal, namely, the distance-
weighted Steinhardt-type order parameter (OP) with different angular moment
L = 2, 4, 6 which can distinguish different minima, and the y axis is the rela-
tive energy (�E) of minima. Reprinted with permission from Ma et al., ACS Appl.
Energy Mater. 1(1), 22–26 (2018). Copyright 2018 American Chemical Society;
S. Ma, S.-D. Huang, and Z.-P. Liu, “Dynamic coordination of cations and catalytic
selectivity on zinc-chromium oxide alloys during syngas conversion,” Nat. Catal.
(published online 2019). Copyright 2019 Nature Publishing Group.

has only a well-defined global minimum, a spineltype structure, and
all the other structures are much higher in energy. It is not surprising
that more than 10 different TiO2 crystal structures have been synthe-
sized in experiment to date [e.g., anatase, rutile, (R), and (H)], while
only a spinel phase is known for ZnCr2O4.

In addition to the global minimum, the global PES can
also reveal unknown metastable structures, which may exhibit

attractive physicochemical properties. In the case of TiO2, it is
known in general chemistry that [TiO6] octahedron is the common
building block for TiO2 crystals. However, a new class of unprece-
dented microporous TiO2 crystalline phases, named TiO2(TB) in
Fig. 4, have been identified, which features a special [TiO5] trig-
onal bipyramid building block, a large pore size (5–7 Å), and
high thermal stability.43 These microporous materials are predicted
to be the candidate of anode materials for Li-ion and Na-ion
batteries.46

B. Origin of amorphous TiOxHy for hydrogen
evolution reaction

Black titania (TiO2) with strong absorption in the entire visible-
light spectrum has been found to exhibit the hydrogen evolution
reaction (HER) activity several orders higher than the conventional
TiO2 material.47–52 Synthesized by hydrogenating pristine TiO2, the
as-synthesized black TiO2 commonly exhibits a core-shell structure
with the amorphous shell, a few nanometers thick, coated on the
anatase crystals.48,53–55 The amorphous shell is believed to provide
the catalytic active site and responsible for the enhanced HER activ-
ity. However, the structure determination for the amorphous shell is
challenging to both experiment and theory, not even mentioning to
understand the high HER activity.

To resolve the HER active sites on the amorphous TiOxHy
shell, we have performed SSW-NN simulation to obtain the TiOxHy
global dataset with 143 786 structures and built a robust and accu-
rate TiOxHy G-NN potential. The structures in the database cover
different Ti:O:H ratios, mainly Ti4O7, Ti4O8, Ti4O8Hx, x = 1–4,
Ti8O16Hx, x = 1–4 with the bulk, layer, and cluster forms, and also
contain large surface systems such as Ti56O112Hx and molecular sys-
tems (H2, H2O). The TiOxHy G-NN potential utilizes 201 PTSDs for
each element, i.e., 77 two-body PTSDs, 108 three-body PTSDs, and
16 four-body PTSDs, and the network involves two-hidden layers,
each with 50 neurons, equivalent to 38 103 network parameters in
total. The final RMSEs of energy and force are 9.8 meV/atom and
0.22 eV/Å, respectively.

Using the TiOxHy G-NN potential, the thermodynamics phase
diagram of TiO2 bulk and surface in contact with H2 at differ-
ent temperatures and pressures can thus be determined quantita-
tively. We found that among common anatase surfaces, only the
ridged anatase (112) surface can reconstruct significantly by surface
H atoms and a local high H coverage, 0.69 ML, can gradually be
built up during the surface amorphization. The amorphous surface
exposes different Ti cations, 25% four-coordinated Ti4c, 50% five-
coordinated Ti5c, and 25% six-coordinated Ti6c atoms [Fig. 5(a)].
Consistently, the Ti-O bond length has a wide distribution, from
1.8 to 2.2 Å, as compared to 1.9–2.1 Å on a perfect TiO2 surface.
This high H coverage not only renders the black color of the amor-
phous TiO2 but also provides a low energy reaction channel forHER:
a transient Ti-H hydride becomes likely to form on the exposed
Ti atoms of the amorphous surface. The nascent TiH hydride can
react facilely with the neighboring OH to produce H2, where the
barrier is more than 1 eV lower than the traditional H coupling
channel via two surface OH groups (barrier > 1.9 eV), as shown in
Fig. 5(b).44,56

We note that after the theoretical work is published, a recent
experimental work reveals the presence of TiH hydride on amor-
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FIG. 5. (a) The structure of amorphous TiO2 surface with H coverage of 0.69
ML. Ti: gray balls; O: red balls; H: white balls (H in reaction: green ball). (b) The
energetic profiles of H coupling via the OH/OH coupling and the TiH/OH coupling
mechanisms on the pristine (112) surface and amorphous TiO2-0.69H. Reprinted
with permission from Ma et al., ACS Catal. 8(10), 9711–9721 (2018). Copyright
2018 American Chemical Society.

phous TiO2, where the characteristic H chemical shift δ value in
1H nuclear magnetic resonance spectroscopy has a negative peak
(−0.6 ppm) and this peak of δ grows with the increase in the
hydrogenation time.57

C. Syngas conversion on ZnCrO catalysts with varied
Zn:Cr ratio

Zinc-chromium oxide (ZnCrO) catalyst is the first generation
industry catalysts for syngas-to-methanol. Experiment shows that
the catalytic activity is significantly affected by Zn:Cr ratios:58–62 the
best activity and selectivity are achieved at Zn:Cr = ∼1:1, while the
Zn:Cr = 1:2 catalysts yield rather poor activity.62 The atomic struc-
ture of ZnCrO catalysts with Zn:Cr = 1:1 remains, however, uncer-
tain as no clear evidence of ZnO formation was found, although
the X-ray diffraction (XRD) patterns exhibit peak broadening and
small peak shifting with respect to the 1:2 phase, ZnCr2O4 spinel
phase.62–64 The structural uncertainty in the ZnCrO catalyst is, in
fact, quite typical for multicomponent oxide catalysts, where the
atomic structures of the active sites are often unknown.

To resolve where and how syngas conversion occurs on the
ZnCrO catalyst, we have performed the SSW-NN simulation to
obtain the ZnCrO global dataset and to build a robust and accurate
ZnCrO G-NN potential. Our simulations contain structures from
10 to 84 atoms per cell and cover different Zn:Cr:O ratios, i.e., ZnO,
CrOx, ZnCrxOy, with different morphology forms, e.g., bulk, layers,
and clusters. The final ZnCrO global dataset contains 38 285 struc-
tures. The ZnCrO G-NN potential contains 324 PTSDs for each ele-
ment, i.e., 132 two-body PTSDs, 170 three-body PTSDs, and 22 four-
body PTSDs, and compatibly, the network involves three-hidden
layers (324-80-60-60-1 net), equivalent to 103 743 network parame-
ters in total. The final RMSEs of energy and force are 4.3 meV/atom
and 0.128 eV/Å, respectively.65

Based on the ZnCrO G-NN potential, the global PES of ZnCrO
is explored and the thermodynamics phase diagram of Zn-Cr-O
is constructed. It reveals a small stable composition island, i.e.,
Zn:Cr:O = 6:6:16–3:8:16, where the oxide alloy crystallizes into a
spinel phase [Fig. 6(a)]. At Zn:Cr = 1:1, a Zn3Cr3O8 metastable crys-
tal phase is present, also with the spinel crystal structure, but con-
tains the highest concentration of unusual [ZnO6] octahedra (Oh)
in the bulk compared to the other spinel crystals. This subtle struc-
tural difference turns out to be critical to affect the syngas conversion

FIG. 6. (a) Ternary Zn-Cr-O phase diagram. The blue circles labeled by numbers indicate the chemical composition and the green region in the middle of the map are the
compositions that have the spinel-type skeleton structure as the global minimum. (b) Gibbs free energy reaction profiles for syngas conversion on two ZnCrO catalysts at
573 K and 2.5 MPa syngas (H2:CO = 1.5). The reaction snapshots are shown in the inset of (b), where the color scheme for atoms is as follows: Zn: green; Cr: purple;
O: red; O in CO: orange; C: gray, and H: white. Reprinted with permission from S. Ma, S.-D. Huang, and Z.-P. Liu, “Dynamic coordination of cations and catalytic selectivity
on zinc-chromium oxide alloys during syngas conversion,” Nat. Catal. (published online 2019). Copyright 2019 Nature Publishing Group.
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activity and selectivity profoundly. Further DFT investigation on the
syngas conversion reaction on Zn3Cr3O8 and ZnCr2O4 proves that
the Zn3Cr3O8 surface can generate the four-coordinated planar Cr2+
cation in site that is critical for methanol selectivity. On the other
hand, the ZnCr2O4 phase shows a low catalytic activity and leads to
methane dominantly [Fig. 6(b)].

The microkinetics simulation based on DFT reaction energet-
ics (methanol yield: ∼670 g kgcat−1 h−1 on Zn3Cr3O8; methane yield:∼0.08 g kgcat−1 h−1 on ZnCr2O4) further rationalizes the sharp dif-
ference in activity and selectivity observed in experiment: the ZnCrO
catalysts with Zn:Cr = 1:1 shows high activity and high methanol
selectivity (methanol yield 80–600 g∗kgcat−1∗h−1 and selectivity 80%
at 573 K), but the ZnCrO catalysts with Zn:Cr = 1:2 shows low activ-
ity and low methanol selectivity [<5 g∗kgcat−1∗h−1 with 14% selec-
tivity to methanol at 573 K and ∼82% to hydrocarbon (91% CH4)
at 673 K].62,66 The findings on ZnCrO catalysts not only strengthen
our understandings, from bulk to surfaces and to active sites, on
the high-temperature syngas conversion on oxides but also sug-
gest other complex oxide systems hotly debated in experiment, e.g.,
ZnZrO, CuZnO, ZnMnO, and ZnFeO,66–68 should now be possible
to explore with the advent of the SSW-NN method.

IV. REMARKS AND PROSPECTS
This perspective overviews the SSW-NNmethod and its recent

applications in heterogeneous catalysis. While SSW-NN holds great
promise in solving some challenging tasks in heterogeneous cataly-
sis, ranging from catalyst active site structure to catalytic activity as
demonstrated in the above examples, one must bear in mind that a
successful application of the SSW-NN method relies much on the
sampled dataset to the target problem. The SSW sampling becomes
frustrated for some molecular reactions and for systems with too
large degrees of freedom, as elaborated below.

(i) Reaction sampling for molecular reactions have a high com-
putational cost even with the SSW method. It is especially
problematic for reactions with a sharp TS region (i.e., char-
acterized by a large negative curvature), where the exact TS
position is difficult to capture by random sampling. As intro-
duced above, the current NN potential generally focuses on
materials such as TiO2 and ZnCrO, and a giant step for-
ward would couple molecular reactions with the solid mate-
rials to establish reactive NN potentials for heterogeneous
catalysis.

(ii) The iterative self-learning in building the global NN poten-
tial may become highly computational when the system size
is large and the bonding complexity increases. In particu-
lar, the large configurational space of bonding environment
in multielement systems is a key problem in constructing
G-NN. For example, there are many possible bonding pat-
terns for carbon with other elements (C, H, O, and N) in
organic chemistry, which leads to great difficulty in build-
ing a general-purpose reactive NN potential for organic
chemistry.

To enhance the reaction sampling and to reduce the system
degree of freedom effectively, we expect that the combination of
other techniques with SSW-NN, such as pattern recognition artifi-
cial intelligence methods, coarse graining, and rigid body methods

could be the future direction to power up SSW-NN for complex
catalysis problems. Our ongoing implementation of LASP software27
could help us to fulfill this goal by integrating different techniques in
one platform, which aims to accelerate the material simulation in the
future.
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