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ABSTRACT: Glucose pyrolysis, a model system in biomass utilization, is
renowned for its great complexity, deep in reaction network hierarchy and rich in
reaction patterns. The selectivity in glucose pyrolysis, e.g., the high yield of 5-
hydroxymethylfurfural (HMF), a value-added platform product, remains an
intriguing puzzle even after 60 years of experimental study. Here we resolve the
whole reaction network of glucose pyrolysis using a global-to-global technique
for reaction pathway sampling. This is achieved by establishing the first organic
chemistry reaction database via stochastic surface walking (SSW) global
optimization, building the global neural network (G-NN) potential via machine
learning and extensively exploring the reaction network of glucose pyrolysis. In
total, 6407 elementary reactions, screened out from more than 150 000 reaction
pairs in glucose pyrolysis, are collected in our reaction database. The established
reaction network from SSW-NN, further validated by first-principles calculations,
reveals that for glucose to HMF, the lowest energy reaction pathway involves
fructose and 3-deoxyglucos-2-ene (3-DGE) as key intermediates and a site-selective reaction type, retro-Michael-addition, for
three consecutive dehydration steps. The overall barrier is determined to be 1.91 eV, being at least 0.19 eV lower than all
previously proposed mechanisms, which assumes direct β-H elimination dehydration. The lowest pathways to the other two
major products, furfural (FF) and hydroxyacetaldehyde (HAA), are also discovered with a similar barrier 1.95 eV, which exhibit
a competing nature by sharing the same key intermediate, 3-ketohexose. Since chemical reactions occurring in fast glucose
pyrolysis are generally present in biomass chemistry, containing essentially all reaction patterns of C−H−O elements, the
methodology designed and the results presented would help to advance reaction design and mechanistic modeling in renewable
fuels from biomass.

1. INTRODUCTION

Biomass is a renewable feedstock for the production of
chemicals and transportation fuels. D-Glucose, commonly
known as sugar, can be obtained from cellulose, the most
abundant component of biomass, by the ring-opening of the β-
D-glucopyranose monomer of cellulose. Glucose conversion
(e.g., pyrolysis) is therefore a straightforward route in biomass
degradation and has raised considerable interest since the
1960s.1−17 Due to the presence of many hydroxyl functional
groups, glucose pyrolysis is notoriously complex with a huge
number of possible reaction pathways, and how to improve the
product selectity is a key question in the field. Mathematically,
this would require a detailed knowledge of the potential energy
surface (PES) of the glucose reaction system to identify all low
energy reaction pathways and thus to determine the reaction
kinetics. However, due to the lack of effcient PES sampling
tools, the prediction of chemical reactivity for a given molecule
without recourse to experiment has long been a dream in
chemistry.
It is known that β-D-glucose pyrolysis (β-D-glucose can

facilely convert to D-glucose) at 350−550 °C leads to several

major products, including 5-hydroxymethylfurfural (HMF),
hydroxyacetaldehyde (HAA), levoglucosan (LG), and furfural
(FF) with the selectivity larger than 5% among more than 15
observed products with >0.1% selectivity (see Table 1). Since
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Table 1. Typical Product Distribution of β-D-Glucose
Pyrolysis in Experiments (FF: Furfural; LG: Levoglucosan;
HMF: 5-Hydroxymethylfurfural; and HAA:
Hydroxyacetaldehyde)

experimenta 1 2 3 4 5

HMF 20.03 7.7 11.93 3.28 12.91
HAA 13.47 6.62 12.8 16.45 16.45
FF 15 8.35 9.74 1.17 8.54
LG 1.04 7 0.15 8.34 1.26

aExperimental data 1 ref 26, (350 °C); 2: ref 6, (500 °C); 3: ref 26,
(500 °C); 4: ref 23, (500 °C); and 5: ref 26, (550 °C). GC−MS were
utilized for the product detection in all experiments.
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the furan products, especially HMF, are highly valuable
platform chemicals, how to control the selectivity in glucose
conversion with mild conditions is the key task in research.
This is however very challenging without a deep understanding
of the reaction mechanism, considering that virtually all CHO
fragments can be generated from glucose’s C6H12O6
composition. The past six decades have seen many different
reaction pathways proposed, mainly based on basic knowledge
of the organic chemistry, but they still cannot rationalize the
observed selectivity in glucose pyrolysis, e.g., why HMF is the
major product instead of smaller CHO fragments. It becomes
even more surprising that the HMF selectivity can be
extremely high under catalytic conditions.2,3,9 Except for
levoglucosan that can be formed in one step via dehydration
of β-D-glucose with certainty, more than three pathways to
HMF from D-glucose were cited popularly in the literature, not
mentioning other pathways to HAA and FF, and low yield
furan byproducts.18−27 To be more specific, the representative
pathways to HMF are outlined below and also shown in Figure
1.
Fructose path23 (Figure 1, green line): The pathway

proceeds via an initial isomerization of D-glucose to D-fructose.
After one step of ring closure and three sequential dehydration
steps, fructose can finally transform to HMF.
3-DG paths21 (Figure 1, black line): The pathway starts

from the loss of C3’s hydroxyl group to form 3-deoxyglucos-2-
ene (3-DGE, 7). The 3-DGE then undergoes the enol-keto
isomerization to 3-deoxy-D-glucosone (3-DG, 8), the ring
closure to 9, and the dehydration to 5. The final step from 5 to
HMF employs the same step as that in the fructose path.
The pathway via 3-DG intermediate may follow an

alternative mechanism proposed by Anet and Moreau (Figure
1, black dotted line).18,19 The pathway proceeds via an initial
tautomerization to intermediate 10 and then three sequential
dehydration steps. However, their proposed final dehydration
reaction cannot be proved by later theoretical studies.
Direct path20 (Figure 1, red line): The pathway first

undergoes two sequential dehydration steps to the enol
intermediate (12) and then dienol (13), which continues to
undergo simultaneous ring closure and dehydration to produce
HMF.

To better resolve the pyrolysis reaction network, theoretical
simulation has been considered as a new tool to complement
experimental findings and even predict the reaction selectivity.
It should ideally be able to fulfill the following key
requirements for investigating glucose chemistry:

(i) Describe all possible bonding patterns of the three
elements C, H, and O;

(ii) Distinguish sensitively different configurations with
flexible hydrogen bonding (H-bonding) network; and

(iii) Explore the enormous reaction space to identify the
lowest energy pathways.

While the state-of-the-art quantum mechanics (QM)
methods can achieve a high accuracy in computing the
electronic structure and thus satisfy the above (i) and (ii)
requirements, they suffer from too high computational cost
and in general fail in the fast reactivity prediction required in
(iii).28 The reaction sampling based on QM was typically
limited to shallow levels in the reaction network hierarchy,
despite many elegant methods that were developed to
expansively interrogate complicated reaction paths.29−33

Recently, Grambow et al. have achieved impressive progress
on the reaction network of γ-ketohydroperoxide (C3O3H6, i.e.,
six heavy-element atoms) by combining several automated
reaction discovery methods based on density functional theory
(DFT) calculations.31 Alternatively, empirical force field
calculations, although with a low computational cost, are
often not reliable in reactivity prediction due to the intrinsic
difficulty of simple analytic functions in describing different
bond formation and dissociation curves.34−36 The current
dilemma thus calls for new methods to efficiently locate both
minima (initial and final states, IS/FS) and transition states
(TS) of chemical reactions.
The recent advance in machine learning techniques points to

a promising direction for reactivity prediction, i.e., by
constructing accurate and low-cost neural network (NN)
PES.37−44 By replacing the self-consistent Schrodinger
equation solvation in QM, NN potential can be utilized as a
powerful numerical solver to correlate the geometry of a
structure to its total energy by learning the existing accurate
PES data set, typically from first-principles DFT calculations.
However, to predict organic reactions via fast and robust NN

Figure 1. Proposed pathways in literature from glucose to HMF, namely the fructose path (green), 3-DG paths (black and black dotted), and direct
path (red). The molecules are indicated by numbers and some key molecules are named as follows: 1. D-glucose; 2. D-fructose; 3. D-fructofuranose;
6. 5-hydroxymethylfurfural (5-HMF); 7. 3-deoxyglucos-2-ene (3-DGE); 8. 3-deoxyglucosone (3-DG); and 10. hex-1-ene-1,2,3,4,5,6-hexaol (enol
form of glucose).
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potential, there are at least two outstanding difficulties related
to the PES of the organic chemistry. First, the configurational
and reactive space of organic molecules is astronomical huge,
involving many elements (at least C, H, O, N) and many
different bonds with different bond orders (C−C, CC, C−
H, C−O, ···). Second, the transition region of organic reactions
often has a high energy due to the bond making/breaking (e.g.,
>0.7 eV). As a result, the traditional PES sampling methods,
such as normal mode sampling, molecular dynamics (MD), or
even the enhanced MD techniques (e.g., metadynamics) meet
with great difficulty in generating a proper data set to represent
the vast reaction space.42−44 The NN potential reported so far
is either specific for a single reaction, e.g., the one generated by
Gastegger et al. for Claisen reaction using metadynamics,42 or
valid largely for minimum structures, e.g., the ANN generated
by Roitberg group43 using the normal mode sampling based on
a subset of GDB-11 data set45,46 (GDB-X is a small organic
molecule database with up to X atoms and up to C, N, O, and
F four heavy elements per molecule).
With the advent of stochastic surface walking (SSW) global

optimization in combination with neural network (NN)

potential method, i.e., SSW-NN,39,40,47 developed by us
recently, here we manage to generate the first global NN
(G-NN) potential for organic reactions and utilize it to resolve
the reaction network in glucose pyrolysis. The lowest energy
pathways to key products, 5-HMF, FF, and AA are discovered,
which lead to resolution of the long-standing selectivity puzzles
in the field.
This paper is organized as follows. In Section 2, we will

briefly introduce the methodology utilized, including SSW-NN
architecture, SSW reaction sampling (SSW-RS), and DFT
calculations. In Section 3, we first validate the G-NN potential
by analyzing the data set and then benchmark the reaction
network of the glucose pyrolysis. In Section 4, we apply the G-
NN PES to search for the lowest energy pathways of glucose
pyrolysis. The key pathways are confirmed by high accuracy
DFT calculations, and the results are discussed thoroughly in
the context of experimental findings.

2. METHODS
2.1. SSW-NN Method. The SSW-NN method developed in the

group as implemented in the LASP code48 (accessible from www.

Figure 2. Scheme of SSW-NN method to build global NN potential for organic reactions. The top pannel illustrates the SSW for PES exploration
to generate representative global PES data that are used by the atom-centered NN architecture for PES learning (also see SI Section S1 for details);
The bottom pannel shows a typical 2000-step SSW trajectory where a β-D-glucose molecule evolves into different products. In the bottom pannel,
the color of lines represents major intermediate molecules evolved in the trajectory (also see the plotted molecular structure), except that yellow
lines represent various products that appear only occasionally. The 3D structural changes in one step SSW step between two specific minima are
also highlighted in the inset as indicated by the dashed arrow. Energy zero is defined by the lowest energy conformation of β-D-glucopyranose. Gray
balls: C; red balls: O; and white stick: H.
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lasphub.com) is utilized to generate the PES data for fitting the G-NN
potential. The method is based on a “global-to-global” idea,34 utilizing
the global optimization method to generate global PES that is utilized
to iteratively train a global neural network potential. While SSW-NN
has demonstrated success in a number of solid materials (e.g., TiO2, B
and ZnCrO),39,40,49 its application in generating the reactive G-NN
for organic molecules is the first attempt and involves much greater
effort. We have designed a self-learning procedure for generating the
reactive NN potential, which will be detailed in Section 3.1 in the
context of data set analyses, and here we briefly overview the SSW
method and G-NN technique, as schematically shown in Figure 2.
The SSW algorithm is a global optimization method that can

explore both minima and saddle points on PES50,51 without any
predetermined guess. SSW implements an automated climbing
mechanism to manipulate a structural configuration moving smoothly
from a local minimum to a high-energy configuration along one
random mode direction. The method was initially developed for
aperiodic systems, such as molecules and clusters, and has been
extended to periodic crystals.
Our G-NN potential39,40,49 follows the atom-centered high

dimensional neural network (HDNN) architecture,37,38 as also
schematically shown in Figure 2 (upper-right corner). The total
energy Etot is written as a linear combination of individual atomic
energy Ei, which is the output of NN. The atomic force (Fi) and the
static stress tensor (Si) can then be analytically derived by relating the
total energy to the coordinate. We utilize our recently proposed
power type structural descriptor (PTSD)40 to construct the input
layer for NN, which was demonstrated to be sensitive for
distinguishing the local chemical environment of the atom. The
PTSDs include two-body functions, S1 and S2; three-body functions,
S3, S4, and S5; and a four-body function, S6. In PTSD, the radial part
of the functions are power functions, and the angular part contains
either trigonal or spherical functions.40

2.2. SSW-RS Method for Pathway Search. With the G-NN
potential, it becomes feasible to explore the whole reaction network
even for a complex reaction process. The SSW reaction sampling
(SSW-RS) developed previously29 is extensively used in this work to
identify reaction pathways in glucose pyrolysis. The SSW-RS method
is an automated method derived upon SSW global optimization
targeted to identify reaction pathways without the need of a priori
information on the reaction. It can simultaneously sample the reactant
space of conformations, often a flat PES with very low barriers, and
the reaction pathways that could have high barriers leading to
unexpected products. The method has been applied to many different
reactions, from molecules29 to solids.52 More details on the SSW-RS
simulation can be found in the Supporting Information (SI) and our
previous work.29 For completeness, we briefly introduce the
procedure of the SSW-RS simulation below.
The SSW-RS simulation can explore the likely reaction pathways

near a predefined reactant and identify the lowest energy pathway
leaving it. The two stages in simulation are as follows: (i) Reaction
sampling via extensive SSW global search, which collects the reaction
pairs from the reactant; and (ii) Pathway building and TS
determination via the double-ended surface walking (DESW).53,54

By progressively changing the reactant of SSW-RS as guided by the
determined low energy pathways, we can therefore explore the whole
reaction network in an automated way (see SI Figure S2).
2.3. DFT Calculations. The data set for fitting NN potential is

generated using first-principles periodic DFT calculations with plane
wave basis set as implemented in VASP package.55 The ionic core
electrons are described using the projector augmented wave (PAW)
pseudopotential.56,57 The electron exchange and correlation effects
are described by the GGA-PBE functional.58 The kinetic energy cutoff
for plane wave basis is 450 eV and the fully automatic Monkhorst−
Pack k-mesh grid is generated with 25 times the reciprocal lattice
vectors. This setup is a standard in building the LASP G-NN potential
library across the Periodic Table.48

Because the GGA-PBE functional tends to underestimate the
reaction barrier for molecular reactions, we have also utilized the
B3LYP functional together with the 6-311++G(2d,p) basis set as

implemented in the Gaussian-09 program59 to refine the reaction
kinetics for all lowest energy reaction channels obtained from SSW-
NN simulation. These results have been compared with the previously
published data and showed good consistency for the same reaction.
We note that the current DFT calculations generally have intrinsic
errors in predicting the reaction barrier and thus the kinetics.60 Here
by focusing on the relative barrier difference between different
pathways and extensively comparing our data with known
experimental facts, we aimed to provide better insights into glucose
chemistry with DFT-based reaction network.

3. RESULTS
3.1. Global NN Potential for Organic Reactions. While

the total numbers of organic molecules and their reactions are
in principle infinite, the reaction pattern as a local property can
be numerated. For example, there are already 12 million single-
step reactions recorded in the Reaxys chemistry database, but
the number of common reaction patterns (appearing more
than 50 times) is limited to be only 17 134.61 The key for
building a reactive organic NN potential is therefore to collect
the reaction patterns via efficient reaction space exploration.
In this work, we design an iterative self-learning procedure of

SSW-NN for generating the organic reaction data set (see SI
Section S1 for details). In brief, there are three key steps in
expanding the reaction database. (i) The short-time SSW
sampling of molecular crystal systems (in variable periodic
cells) are performed using DFT calculations, which provide the
most common bonding pattern of organic molecules with the
C−H−O−N four elements. The starting molecular structures
for these SSW-DFT simulations are randomly selected from
the QM9 database (QM9 is a standard organic molecule
database with no more than 9 heavy atoms generated from the
GDB-17 data set by DFT calculations62,63); (ii) The SSW-NN
global sampling of organic molecules and molecular crystals are
performed iteratively to expand the reactive PES data set. The
starting structures are also randomly selected from the QM-9
database; (iii) The SSW-NN global sampling for glucose
pyrolysis reaction networks are used to further improve the
transferability of the G-NN potential for glucose chemistry.
The starting structure are updated and randomly selected from
glucose global optimization SSW trajectories. It should be
mentioned that both (ii) and (iii) steps are in an iterative self-
learning manner, where NN potential is iteratively trained by
incorporating a new DFT data set screened from the SSW-NN
global optimization. Both step (ii) and step (iii) are essential
for robustness and accuracy in describing the glucose reaction
PES using NN.
To illustrate how the reaction space is sampled by SSW-NN

and how the NN potential is improved iteratively, e.g., in step
(iii) above, we show a typical SSW trajectory starting from β-D-
glucopyranose in Figure 2. Within a 2000 step SSW sampling,
31 different molecules are encountered, which can be divided
into 8 main minimum domains (marked by different color
lines) and many other minority minimum structures (marked
by yellow lines). In each minimum domain the diversity of
conformations is also evident from the large oscillation in the
energy scale. The entire trajectory gradually changes from a six-
membered ring to dehydration products and finally to short-
chain molecules. In the meantime, different functional groups
emerge, e.g., the common alcohol, ether, alkenyl, and aldehyde
groups, together with some exotic structures (e.g., with
uncommon coordination). The appearance of exotic structures
in SSW-NN trajectory reflects the wrong prediction of the NN
potential because these structures are rare and not included in
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the existing training set. Consequently, these structures should
be added to the training set for further learning (we list our
guidelines on how to select these structures in SI Section S1).
As a representative, the inset indicated by the dashed arrow

in Figure 2 illustrates the structure snapshots in one step SSW,
which transform 6-(hydroxymethyl)-2H-pyran-2,4-diol (blue
line) to 3,5,6-trihydroxyhexa-2,4-dienal (minority minimum,
yellow line), which is the enol-keto tautomeric precursor of
1,4,6-trihydroxyhexa-3,5-dien-2-one (red line). With such a
process, the reaction space with the simultaneous O−H bond
formation and C−O bond rupture is captured by SSW
sampling and subsequently learned by the G-NN potential.
By using the SSW-NN method, we finally obtained the

organic reaction data set with 94 854 structures in total. Our
data set covers almost all likely local patterns (78) that obey
the octet rules of C atom (in total 79 for C with the chemical
environment of the C−H−O−N four elements), which is even
larger than that in QM9 data set (63) (these local patterns are
detailed in SI Section S2). The larger bonding pattern diversity
in our data set demonstrates the power of SSW global search in
exploring the chemical space. In addition, we also identify 410
bonding patterns that do not obey the octet rule. Not limited
to low energy saddle point structures, they also include both
too highly coordinated carbon atoms (e.g., up to six first
neighbors and up to nine bond orders) and too low
coordinated atoms (e.g., radials and single atoms). These
minority structural patterns are in fact critical for G-NN to
define the boundary of global PES, which eventually allows the
reactivity prediction from first-principles (no predetermined
guess).
In order to train a high-quality G-NN potential using the

vast amount of global PES data, we have adopted a large set of
PTSDs, i.e., 407 structural descriptors in total for each element,
including 148 two-body, 229 three-body, and 30 four-body
descriptors. In addition, the network utilized is also large with
120−80−80 three-hidden layers, equivalent to 65 201 network
parameters per element and 260 804 in total (the guidelines to
choose a suitable NN architecture can be found in our previous
work).40 Both the large number of structural descriptors and
the large NN parameters are found to be essential to achieve
high accuracy for predicting organic reactions in general: the
final NN PES can achieve the RMS values for energy and force
with 10.05 meV/atom and 0.242 eV/Å, respectively. The
overall accuracy is satisfactory considering that the energy of
the structures in our global data set spans in a large window
from 1.5 to 6 eV/atom. We also demonstrate the G-NN
performance on the geometry and reactions for common
organic molecules and reactions that are compared with the
DFT results in SI Section S3. We will further our benchmark
results for glucose pyrolysis later in Section 3.2.
It should be mentioned that the PTSDs utilized in

constructing the G-NN potential are selected to maximally
distinguish structures. To visualize the data set and illustrate
the performance of PTSD, we have performed principle
component analysis (PCA) on the data set. We randomly
selected 6000 carbon atoms from data set, which belong to six
typical functional groups in the first neighbor, i.e., s-alcohol,
alkene, s-alkane, amine, p-alkane, and p-alcohol. PCA was then
utilized to identify the principal component projections of the
407 PTSDs of our G-NN potential that describe the
geometrical environment of the carbon atoms. Figure 3 plots
the 6000 data points projected on the first three components
obtained from PCA, which rank as the most valued

components to distinguish these carbon atoms. It shows that
there is an obvious clustering of data points, exhibiting
different domains of functional group as colored by different
zones, which implies that the first neighboring environment for
the six functional groups can be distinguished nicely by our
PTSDs. In the meantime, the data points belonging to the
same functional group remain to be scattered inside each
domain, indicating the long-range minority structural differ-
ences can also be described well by PTSDs.
While our SSW-NN simulation has covered most local

molecular patterns for C−H−O−N elements, there is of
course no guarantee that the reactions associated with all these
patterns can be predicted correctly using the current G-NN
potential due to the enormous chemical space of organic
reactions. We emphasize that the G-NN potential can always
be retrained to incorporate more reaction data that are relevant
for any particular purpose, and thus can grow its predictivity
with time and usage.

3.2. Glucose Pyrolysis Pathway Sampling via SSW-NN
and Benchmark with DFT. With the G-NN potential, it is
now feasible to extensively explore the reaction space of
glucose. By using the SSW-RS method to automatically sample
the likely pathways, we have iteratively searched the reaction
tree starting from glucose, where the simulation records the
elementary reactions, i.e., IS, TS, and FS, to establish a reaction
database. Specifically, in each cycle of SSW-RS, one
intermediate is selected as the starting molecule, and the
simulation then samples the possible reaction route leaving
from this molecule and collects all reactant/product (R/P)
pairs. After the pathway search, all recorded R/P pairs are
connected and verified to determine the reaction barrier. After
removing the duplicate elementary reactions, these new
reactions are added to the reaction database. From the
updated reaction network of glucose pyrolysis, a new molecule
is selected as the next starting molecule for the SSW-RS in the

Figure 3. Principle component analysis plot of 6000 carbon atoms
with six different functional groups that are randomly selected from
the global training data set. The data are projected onto the first three
PCs (PC1−PC3) of PTSDs.
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next cycle. A threshold overall barrier, i.e. 3.0 eV, is utilized to
select the molecule that is not sampled previously by SSW-RS,
i.e., the overall barrier to reach this molecule from glucose
should be less than 3.0 eV (obviously, a too high barrier is not
necessary since pyrolysis occurs below 550 °C).
Benefiting from the low cost of G-NN PES, we can now

achieve a deep exploration of the reaction tree starting from D-
glucose. In this work, we have managed to sample 1 200 000
minimum and collected more than 150 000 reaction pairs.
With this reaction data, we are able to establish a reaction
database where each elementary step is indexed uniquely by
using the structural fingerprint of reactant and product and the
reaction barriers separating them. After removing duplicate
reactions and recording only the lowest barrier connection
between pairs, the final reaction database contains 4455 unique
molecules, and 6407 different reactions with 3488 reaction
patterns.
Before we searched the lowest energy pathways using the

reaction database, we have examined the accuracy of G-NN
PES. We randomly selected 2000 points from a SSW trajectory
starting from D-glucose and benchmarked them with DFT
results. These data are not only minimum structures, but also
mostly nonequilibrium and high energy structures from the
SSW trajectory. As shown in Figure 4, we found that the

RMSE are 9.90 meV/atom for all data points and 7.20 meV/
atom for those below 3 eV. It suggests that the error bar for the
computed barrier for low energy reactions from G-NN PES
should be less than 0.3 eV (24 atom of glucose), which
provides a quantitative guideline to select the low energy
pathways from the reaction database.
3.3. Mechanisms and Selectivity of Glucose Pyrolysis.

Now we are in a position to present our results on the lowest
energy pathways of glucose pyrolysis. By estimating the
reaction rate based on transition state theory (assuming the
typical pre-exponential factor 1013 and the reaction temper-
ature 500 °C) for each elementary reaction of the reaction
database, we have identified the low energy pathways from

glucose to different reaction products on the G-NN PES. To
be accurate, we then selected 2060 reaction pairs (IS, TS, and
FS) from 500 lowest energy pathways that are associated with
the glucose to the three key products, i.e., HMF, FF, and AA,
and refined their energetics using DFT where all minimum
structures are fully relaxed and the TSs are researched. (A
comparison between NN and DFT is detailed in SI Figure S2).
All pathway results reported below are from DFT energetics
(B3LYP with 6-311++G(d,p) basis sets, see also Section 2),
which can be compared directly with previous calculations by
other groups.22

To help us elaborate the key pathways, we first provide an
overview on the basic reaction patterns in Figure 5. There are
six reaction patterns frequently encountered for reactions in
glucose pyrolysis, namely, cyclization, isomerization, retro-
aldol, tautomerization, retro-Michael-addition, and β-H
elimination as ordered by their reaction barrier from low to
high. They are explained below.

(i) Cyclization (CR): The cyclization in glucose pyrolysis is
mainly associated with the transformation of mono-
saccharide from aldehyde/ketone to inner hemiacetal29

via ring formation by a hydroxyl group attacking the
neighboring carbonyl group.

(ii) Isomerization (IM): This refers to the proton exchange
between a carbonyl and the adjacent hydroxyl groups
and the simultaneous H exchange between these two
adjacent C atoms.

(iii) Retro-aldol (RA): The retro-aldol reaction that splits a
monosaccharide into the aldehyde and enediol frag-
ments occurs when the C−C bond between the α-C and
the β-C of a carbonyl group breaks.

(iv) Tautomerization (TA): The switch between keto and
enol configurations can occur via the H exchange in
between a carbonyl group and its neighboring α-C.

(v) Retro-Michael-addition (RM): This refers to the
dehydration reaction by combining a proton of enol
hydroxyl and a neighboring β-OH group to generate the
α,β-unsaturated carbonyl compound.

(vi) β-H elimination: The β-H elimination (1,2-dehydration)
involves the simultaneous α-OH removal and the Cβ−H
bond cleavage.

The CR reactions often have the lowest energy barrier, ∼1.7
eV with respect to D-glucose provided with the optimal H-
bonding network.29 Then it follows the IM reaction, which has
a barrier slightly higher or similar to that of CR reactions. An
IM reaction can occur directly in between two neighboring
groups, but is also likely between two non-neighboring groups
that are spatially close due to the folding of carbon chain. The
RA reactions, despite having relatively low barrier (∼0.1 eV
higher than that of IM), are usually highly endothermic, e.g.,
more than 0.5 eV. Next, the TA reactions are difficult in the
gas phase, usually with a barrier greater than 2.5 eV. The
reaction can however be promoted if the nearby H-bonding,
e.g., hydroxyl groups from other molecules, is present, which
could assist the proton transfer by stabilizing the TS. The
reaction barrier can thus be reduced to ∼2.0 eV in the
presence of an appropriate H-bonding network. The product
of TA reactions (enol) can often undergo a facile RM reaction
to drop out one H2O molecule in one elementary step with a
barrier as low as 1.5 eV. The overall barrier with respect to the
keto reactant of TA reaction is ∼1.9 eV. In addition to the
dehydration route by RM reactions, it is also likely to remove

Figure 4. Energy-resolved RMSEs of energy for the G-NN PES
performance on 2000 structures randomly selected from the SSW
global search trajectory starting from glucose. The x-axis is the energy
window of structures relative to the lowest energy minimum in the
trajectory and the y-axis represent the RMSE of energy between G-
NN and DFT calculations.
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H2O molecule via the β-H elimination, which is however
highly difficult with the barrier ∼2.4 eV. Even with the help of
H-bondings, e.g., via other nearby hydroxyl groups, the barrier
for β-H elimination remains above 2.1 eV.
We have carefully analyzed the pathways in our reaction

database to identify the pathways to different products
mentioned in the experiment, e.g., LG, HAA, different furan
products, and formic acid. We found that the LG, HMF, FF,
and HAA, the major products in the experiment, are the
products with the lowest energy pathways among the known
products. In the following we describe the lowest energy
pathways to three key products, HMF, FF, and AA, in detail
(the path to LG is straightforward and is left in the SI, together
with the pathway to the other products, i.e., 2-furanmethanol
and formic acid). As mentioned in the Introduction, the
reactions of D-glucose have been discussed in many previous
literatures. For example, the major reaction route to HMF, the
most concerned product, was suggested to follow the fructose
path (see Figure 1). From our reaction database, this fructose
path has a high overall barrier, 2.1 eV, occurring at the β-H
elimination step (e.g., 5 → 6 in Figure 1), which are the
highest barrier reaction pattern in our reaction database
(Figure 5). In addition, the β-H elimination reaction has no
site selectivity and can occur between any adjacent −COH and
−CH. This is obviously contradictory to the observed major
selectivity to HMF. Instead, our reaction database provides
lower-barrier alternative routes to generate HMF, HAA, and
FF, as shown in Figure 6, where the molecular intermediates
are also labeled by numbers (1, 2, ...) following those in Figure
1. Importantly, the two value-added furan products, HMF and
FF, share the same key reaction pattern in the dehydration
step, namely, a retro-Michael addition step and no β-H
elimination reaction is involved. We now elaborate them
below.
3.3.1. HMF Pathway. β-D-Glucopyranose first undergoes

the ring opening and isomerization to D-fructose (14 → 1 →
2). D-Fructose then transforms to an enediol structure (2 →
10) with the help of an internal H-bonding network (also see
Figure 7). For the enediol (10) configuration, the subsequent
1,3-dehydration (RM reaction) is facile which generates an
α,β-unsaturated carbonyl compound, 3-DGE (7), which is a
reverse reaction of 1,4-michael addition. The dehydration
product 7 can then go through a similar 1,3-dehydration to

intermediate 11, which can isomerize to 15 with an H atom
transferring from C5 to the carbonyl oxygen on C2. The HMF
can finally be produced by following the cyclization and 1,5-
dehydration (15 → 16 → 6). The 1,5-dehydration is also an
RM type reaction, similar to the previous 1,3-dehydration.
Overall, the rate-determining step belongs to the enol-keto TA
reaction (2 → 10), with a barrier of 1.91 eV (with respect to
the most stable configuration of β-D-glucopyranose hereafter),
which is 0.19 eV lower than the previous pathways (2.10 eV in
β-H elimination). Although such enol-keto TA reactions are
higher in barrier than the CR, IM, and RA reactions, the
mechanism is overall favored due to the opening of the RM
route in the subsequent dehydration reactions and the
avoidance of the direct β-H elimination. It should be
mentioned that D-glucose can also tautomerize to 3-DGE (7)
via 1 → 10 directly with a slightly higher overall barrier (by
0.08 eV).

3.3.2. FF and HAA Pathway. These two common products
share the same the first step, that is, the carbonyl group at the
C1 position (as labeled in glucose molecule of Figure 5) of D-
glucose (1) isomerizes to the C4 position (17,3-ketohexose)
(1 → 17). This is also the rate-determining step for both
pathways with an overall barrier of 1.95 eV (Figure 6B). 17 can
then produce HAA directly after an RA reaction (17 → 18).
After HAA is produced, the enediol molecule (but-1-ene-
1,2,3,4-tetraol) may further undergo 1,3-dehydration to
produce enal (2,4-dihydroxybut-2-enal) that is thermodynami-
cally more stable (18 → 19).
The pathway to FF bifurcates after the intermediate 17, from

which a formaldehyde is removed to generate 20 through a
retro-aldol reaction. After that, the pathway is similar to the
HMF pathway from the intermediate 10: two consecutive 1,3-
dehydration can happen facilely first from the enediol product
(pent-1-ene-1,2,3,4,5-pentaol) of 20 (20 → 21 → 22), which
are followed by the isomerization, cyclization, and dehydration
reactions (22 → 23 → 24 → 25). Since the rate-determining
step to FF and to HAA is the same, these two products are in
competition. It is expected that at high temperatures the HAA
route with more fragments produced are preferred due to the
increased entropy gain.
We would like to further emphasize the critical role of the

H-bonding network in the β-D-glucose pyrolysis. While this
effect has been shown previously,29 here with the large reaction

Figure 5. Major low energy reaction patterns identified from the glucose pyrolysis reaction network.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b11535
J. Am. Chem. Soc. 2019, 141, 20525−20536

20531

http://pubs.acs.org/doi/suppl/10.1021/jacs.9b11535/suppl_file/ja9b11535_si_001.pdf
http://dx.doi.org/10.1021/jacs.9b11535


database we can better quantify the promotional effect of the
H-bonding network to each class of reactions. As glucose
contains multiple hydroxyl groups, nearly all reactions are
found to be affected by the nearby H-bonding. For example,
IM reactions often occur in between two neighboring C, but
becomes likely in between non-neighboring C under specific
spatial configurations with the appropriate H-bonding network,
such as 1 → 17 (Figure 6) where the molecule folds to allow
close contact in between C1 and C4. In addition, the CR and
TA reactions need the H-bonding network to transfer proton,
which is critical to decrease the contact distance between the
transferring H and the accepting O. We found that the barrier
reduction can be as large as ∼1 eV. As illustrated in Figure 7, in

the rate-determining step of the HMF pathway, 2 → 10, the
H-bonding network as identified by SSW-NN significantly
facilitates the TA reaction that involves the removal of the H
atom of C1 and the hydrogenation of the carbonyl group at
C2. The hydroxyl groups at C6 and C5 and the carbonyl group
at C2 all participate in the H atom transfer, forming a
sequential H-bonding chain. In this way, the highly twisted
configuration via direct H transfer from C1 to the carbonyl at
C2 can be avoided, which reduces the barrier by ∼1 eV!

4. DISCUSSIONS
It is of significance to discuss our new mechanism in the
context of previous experimental findings. As for the likely

Figure 6. (A) The lowest energy pathways to three major products, HMF, FF, and AA, identified from the glucose reaction network; and (B) the
energy (zero-point-energy corrected) profile for the lowest energy pathways to HMF, HAA, and FF. The energy zero refers to the most stable
configuration of β-D-glucopyranose. In (A), ΔE‡ and ΔErxn correspond to the barrier and the reaction energy of the elementary reaction,
respectively.
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intermediates, fructose has been detected by the experiments
of Ponder and Richard in glucose pyrolysis tar.64 Paine et al.
further confirmed that the pyrolysis from fructose results in a
higher yield of HMF (∼4 times) than the pyrolysis from
glucose, as would be expected if fructose is the key
intermediate.65 On the basis of this, the fructose pathway to
HMF was proposed in the literature (Figure 1).23,25,65 In
addition, the 3-DG intermediate, captured as its (2,4-
dinitrophenyl)-osazone derivative, was confirmed in the acid-
catalyzed formation of HMF from fructose by Anet,1,18 which
inspired the 3-DG path (Figure 1). These two pathways
however are not consistent with each other on the key
intermediates. Nevertheless, they do share a key reaction
pattern, i.e., β-H elimination in dehydration (3 → 4, 9 → 5, 5
→ 6, 1 → 12), which turns out to be the rate-limiting step for
both pathways from recent DFT calculations.20,21,23,25 Since β-
H elimination has no obvious selectivity on removing the
neighboring H of CH, it is puzzling that HMF is a major
product in glucose pyrolysis.
Obviously, our new mechanism for 5-HMF does confirm

both fructose and 3-DGE (enol form of 3-DG) as
intermediates, but does not require β-H elimination. Instead,
the 1,3-dehydration or 1,5-dehydration by RM reaction to
produce α,β-unsaturated carbonyl compounds occurs, which
require only O−H bond cleavage in all three dehydration steps
(10 → 7, 7 → 11, and 16 → 6). Such dehydration reactions
can greatly reduce the reaction barrier from our data and are
consistent with the fact that 1,4-Michael addition for α,β-
unsaturated carbonyl compounds is a well-known reaction in
organic chemistry. In fact, we note that the difficulty in β-H
elimination has been recognized by Mayer et al, who proposed
that 1,3-dehydration reactions may occur in the second

dehydration step with a lower barrier in the fructose pathway
(Figure 1, 4→ 5), although the β-H elimination remains in the
first and third dehydrations of the fructose pathway.23

In summary, our new mechanism for 5-HMF production
supports the known experimental findings. First, while fructose
is believed to be a key intermediate to HMF,65 the other
channels without fructose participation appear to also be likely.
The direct dehydration from glucose to HMF appears to be
important for 5-HMF production in the experiment with VCl3,
GaCl3, and InCl3 catalysts that exhibit low rates of fructose
formation.9 In our pathways, the TA reaction from fructose to
enediol (2 → 10) is 0.08 eV lower than that directly from D-
glucose (1 → 10). This small energy difference is expected to
vary under different catalytic conditions, leading to the switch
of the pathways with or without fructose. Second, HMF
formation from 3-DG proceeds at a significantly higher rate
than that from fructose.21 In our mechanism, 3-DG is a keto
isomer of 3-DGE, which obviously has a shorter and lower
barrier path to HMF compared to that from fructose. Third,
in situ 13C NMR showed that C1 of fructose corresponds to
the carbonyl carbon of HMF, and the C6 is the hydroxymethyl
carbon of HMF.66 This atom-to-atom correspondence also
agrees with the prediction from our pathway. Last but not
least, our results show that the HMF product has a lower
barrier (1.91 eV) compared to that of FF and HAA products
(1.95 eV). This suggests that HMF is more favorable at low
temperatures, which is indeed observed in experiment (Table
1): HMF selectivity can drop from 20% in 300 °C to 12% in
500 °C.
For the HAA product, the isotopic labeling experiment has

shown that the main source for HAA comes from C1−C2
(39.5% in 500 °C) of glucose, and those from C3−C4 or C5−
C6 are lesser (18.8% and 34.1% in 500 °C). This distribution
varies at different reaction temperatures.24 At the low
temperature (350 °C), the C1−C2 ratio is much higher
(58.5%), which suggests that the C1−C2 pathway is kinetically
favored. Two explanations may be likely for the C1−C2
product selectivity. (i) The HAA is produced from HOCH
CHOH (1,2-ethenediol) via the direct RA of D-glucose (see
Figure 5 RA product) as proposed by Lu et al.24 (ii). The HAA
is produced from the decomposition of 17 (carbonyl on C4, 17
→ 18) as shown in our mechanism (see Figure 6A). The
explanation (i) must involve the TA reaction of 1,2-ethenediol
to HAA, which has a very high barrier (>2.40 eV) from the
previous computational results (also confirmed by us).24

However, the explanation (ii) has a much lower overall barrier
of 1.95 eV (see Figure 6B). It is interesting that none of the
previous work has considered 17 as an intermediate to HAA,
possibly due to the fact that the 1,4-shift of the IM reaction (1
→ 17) identified by SSW sampling is not intuitive. We
emphasize that our mechanism to HAA with the C1−C2
selectivity has the lowest barrier according to our reaction
database. The other routes to HAA are kinetically more
difficult with a barrier of at least 2.19 eV, e.g., from the RA
product of threose24 with C5−C6 selectivity (see Figure 5).
For FF product, the isotopic labeling experiment shows that

more than 90% FF keeps C1−5 with C6 of glucose being
removed.65 On the basis of this experimental fact, different
mechanisms with the removal of the C6 were proposed, but all
have relatively high reaction barriers (>2.43 eV),25 being
contradictory with the major yields of FF and HMF in
experiment (see Table 1). We show that the RA reaction from
intermediate 17 can readily drop out one formaldehyde

Figure 7. Reaction snapshots of the rate-limiting step in HMF path, 2
→ 10 (see also Figure 6), which illustrates the critical catalytic role of
the H-bonding network. Gray balls: C; red balls: O; white stick: H;
and yellow balls: the reacting H and the H atoms involved in the H-
bonding chain.
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molecule from C6 (17 → 20), and the remaining enol product
can lead to FF after dehydration and cyclization reactions,
similar to those in the HMF path. The whole path has a similar
barrier (1.95 eV) as our pathway to HMF (1.91 eV).
Finally, our mechanism not only explains the observed

glucose pyrolysis phenomena, but also provides important
insights into to the catalytic glucose conversion. The two key
reaction patterns in our pathway, the TA and the RM reaction,
are known to be facile in acid or metal chloride catalysis from
organic chemistry. This indicates that (i) once the glucose
transforms to the chain configuration, it can follow the low
barrier pathway, 1 → 10 → 7... → 6 without passing fructose;
and (ii) if fructose is the starting reagent, then the pathway 2
→ 10 → 7... → 6 is similarly promoted by catalysts. This is
consistent with the observed high conversion rate and
selectivity of the HMF product with and without fructose in
catalytic experiments at low temperatures: for example, Zhao et
al. reported 70% of HMF yield from glucose at 100 °C
catalyzed by CrCl2; Dumesic’s group reported 80% HMF
selectivity at 90% fructose conversion at 180 °C in acid
catalytic conditions.2,3,9 Under these conditions, fructose can
be in fast equilibrium with the chain form of glucose via the
rapid TA interconversion, 1↔10↔2. Compared to the RM
reaction, the β-H elimination for dehydration requires strong
acids, which is not often utilized in experiment.

5. CONCLUSIONS
For understanding and predicting biomass chemistry, this work
designs a systematic procedure to generate a G-NN potential
for organic reactions that can explore the vast reaction space
with up to C−H−O−N four elements. By fitting 94 854 global
PES structures obtained from SSW-NN global sampling, our
final NN PES can describe nearly all functional groups (78)
that satisfy the octet rule, together with 410 structural patterns
that break the octet rule. A reaction library for glucose
chemistry is thus established by SSW-NN reaction sampling,
allowing the classification of the basic reaction types and the
clarification for the whole reaction network. This finally leads
to a settling down of the long-standing selectivity puzzles of
glucose pyrolysis. Our findings on the glucose pyrolysis are
outlined below.

(i) Our HMF pathway involves both fructose and 3-DGE
intermediates and a site-selective dehydration pattern via
retro-Michael-addition mechanism. The direct dehydra-
tion via the β-H elimination mechanism proposed in
previous literature is excluded due to the higher barrier
from theory and the inconsistencies in the site-selectivity
with known experimental findings.

(ii) Our HAA and FF pathways share the same initial IM
step, followed by different RA reactions to produce HAA
and FF, respectively. The mechanism prefers the HAA
production from the C1−C2 of glucose, and the C6
removal in FF production.

(iii) The pathways to HMF, HAA, and FF have similar
overall reaction barriers, i.e., 1.91 eV for HMF and 1.95
eV for HAA and FF, and can be significantly promoted
under acidic conditions.

While the glucose chemistry is focused on here, the
theoretical framework, i.e., the machine learning techniques
in combination with SSW global optimization for generating
reactive NN potential and creating reaction database, is
rigorous and readily applicable to other reaction systems in

general. For example, with the current G-NN potential, other
organic reactions can be first explored facilely using SSW-NN,
and the G-NN potential can then be improved iteratively by
retraining the new reaction data. This new way of reaction
exploration should significantly speed up our search of
complex chemical reactions. Of further interest, SSW-NN
also enables the extensive reaction sampling in heterogeneous
catalysis,47,52 and the generation of G-NN potentials for
molecules on surfaces are now in progress (see the LASP Web
site, www.lasphub.com).We thus believe that the reaction
prediction for complex catalytic reactions is within reach with
modern computing facilities.
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