
structure. As a direct tool to correlate atomic structure with energy, theore-
tical simulations have been widely practiced in modelling catalyst structure
and even predicting activity, especially with the advent of density functional
theory (DFT) calculations.5 However, DFT simulation is generally limited to
hundreds of atoms, and thus fails to explore exhaustively the phase space of
complex catalysts, such as amorphous structures, or multicomponent oxide/
alloys.6–8

To identify the active site of a catalyst from theory, it is essential to explore
the complex PES of exposed surfaces. This requires not only a fast and reliable
approach to evaluate the energetics of structures but also an efficient method
to explore the structural phase space. As for PES calculation methods, most
are based on quantum mechanics as represented by DFT calculations, while
the empirical force field calculations, and more recently artificial neural
network (NN)9 potential method (see Figure 19.1), despite their limitations in
transferability, are also often utilized in material applications.

As catalytic conversion involves chemical bond making and breaking,
DFT calculations have been the most popular way to provide an accurate

Figure 19.1 Combination of NN potential with SSW global optimization. The total
energy, which is the sum of all atomic energies, can be obtained from
NN potential. The atomic energy involves power-type structural de-
scriptor (PTSD) computation and an NN evaluation. The SSW global
optimization is utilized to explore the PES and produce new structures.
Reproduced from ref. 27, https://doi.org/10.1063/1.5113673, under the
terms of the CC BY 4.0 license, http://creativecommons.org/licenses/by/
4.0/.
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description of reactions with a reasonable computational cost. The compu-
tation speed of DFT is sensitive to the complexity of the employed density-
functional (e.g. PBE,10 HSE0611) and has a poor scaling (at least O(NlnN)). It
has great difficulty in exploring the reaction network in large catalytic sys-
tems (e.g.4 100 atoms). As a promising alternative, the NN potential method
developed in the past decade demonstrates its power in treating complex
PES problems, from gas-phase reactions to material dynamics.12–15 Recently,
it was also utilized to solve the structures of heterogeneous catalysts, for
example, Pd(O),16 Pt(H),17 CuAu,18,19 CuCeO,20 and CuZnO.21 Unlike tradi-
tional force field potentials, the NN potential is capable of describing
chemical reactions with high accuracy as long as the training dataset con-
tains reactive data, such as the transition state (TS).

Paralleling progress in PES evaluation methods, many PES exploration
methods have been developed in past decades. As catalytic reactions and
structural reconstruction generally occur above ambient temperatures in-
volving high barrier processes, traditional molecular dynamic (MD) simu-
lation is often not appropriate for active site identification. Instead, global
optimization methods, which can overcome the high barrier on PES,
are desirable. Common global optimization methods include simulated
annealing,22 genetic algorithm,23 basin hopping24 and stochastic surface
walking (SSW)25,26 etc.

This chapter outlines recent developments in catalyst PES exploration and
active site identification. We will show that the combination of a global NN
potential with the global optimization SSW method provides a powerful
platform to resolve the catalyst structure, which can finally lead to the pre-
diction of catalyst activity from the first principles dataset.27

19.2 Methods
Unlike classical force field potentials that utilize physical models to describe
interatomic interactions, the NN potential is a numerical function fitted by a
large number of parameters. Consequently, the NN potential has a limited
predictability beyond the training dataset. The key to improving the quality
of the NN potential, therefore, relies heavily on the PES representability of
the dataset. To overcome this limitation of the NN potential, we proposed in
2017 a global-to-global scheme to generate a reliable and robust global-NN
(G-NN) potential for material simulation.28 This scheme combines the SSW
global sampling method,29 the high-dimensional NN (HDNN) for PES de-
scription, and a self-learning procedure to expand the dataset and upgrade
the G-NN potential. In the following, we elaborate each part of the scheme.

19.2.1 High-dimensional NN Architecture

The artificial NN method was firstly developed to understand signal pro-
cessing in the brain.30 In the following decades, NN evolved into a class of
powerful algorithms applied to a variety of fields from numerical prediction
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and pattern recognition to data classification. It is most renowned for the
powerful ability to establish the functional relationship between independ-
ent variables and target (dependent) values via non-linear ‘‘black box’’ data
processing.

As an important tool for function fitting, the standard feed-forward NN
(FFNN) has been utilized naturally for constructing the PES in small
molecular systems, e.g. for gas-phase dynamics.12–15 A major drawback of the
traditional FFNN potential is that it is difficult to extend to systems of dif-
ferent size (variable number of atoms). A breakthrough was achieved in 2007
by Behler and Parrinello who implemented an HDNN architecture for ma-
terial simulation. The method is applicable to high-dimensional systems
containing thousands of atoms.31–33 In the approach, the total energy Etot of
the system is written as the summation over all atoms (see eqn (19.1)), see
Figure 19.2.

Each atom is represented by an atomic FFNN, where the input layer is a
series of structural descriptors to represent the atomic bonding environment
and the output layer yields the atomic energy Ei (i indexes atoms). This
HDNN scheme is applicable to systems with any number of atoms as the
total energy is a linear summation of all atomic energy.

Etot ¼
X

i

Ei Rð Þ (19:1)

The input nodes that are used to distinguish the atomic chemical en-
vironment are critical for the performance of the NN potential. They utilize
the radial and angular information from neighbouring atoms to represent
the multi-dimensional interaction between atoms. A good structural

Figure 19.2 The atom-centred structure description scheme in the high-
dimensional NN architecture. Each element has a different NN, and
each atom is distinguished by its element and structure descriptors
centred on it.
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descriptor set must be a single-valued function so that different atomic
environments yield different values, and they must be continuous and dif-
ferentiable to enable the calculation of analytic derivatives of energy.34–36

More details of structure descriptors are discussed in the next subsection.
For one set of structural descriptors, the atomic force and static stress

tensor matrix element sab can be analytically derived according to eqn (19.2),
where the force component Fk,a, a¼x, y or z, acting on the atom k is the
derivative of the total energy with respect to its coordinate Rk,a. By combining
with eqn (19.2), the force component can be further related to the derivatives
of the atomic energy with respect to jth structural descriptors of atom i, Gj,i.

Fk;a ¼ �
@Etot

@Rk;a
¼ �

X

i;j

@Ei

@Gj;i

@Gj;i

@Rk;a
; (19:2)

Similarly, the static stress tensor matrix element sab can be analytically
derived using the pairwise distance according to eqn (19.3).

sab ¼ �
1
V

X

i;j;d

rdð Þa rdð Þb
rd

@Ei

@Gj;i

@Gj;i

@rd
; (19:3)

where rd and rd are the Cartesian distance vector and its module between
atom i and j, respectively, and V is the volume of the structure.

19.2.2 Structural Descriptors

As NN potential correlates the geometry of structure with its energetics, one
would wonder what kinds of structural descriptors can achieve the best
performance to describe the multi-dimensional PES. Behler and Parrinello
suggested a series of rotation-invariant symmetry functions as the structural
descriptors, which are the mathematic functions of intrinsic coordinates
(pair distance, angles) multiplying the cutoff radial function.31 Following
the same terminology of an empirical forcefield, these functions can be
distinguished as two-body terms, three-body terms, and so on. As the radial
parts of these functions are Gaussian functions, we label them as Gaussian-
type structure descriptors (GTSD). The mostly used two-body G2 and three-
body G4 functions are described in eqn (19.4)–(19.6).

fc Rij
� �

¼ 0:5 � tan h3 1 �
rij
rc

h i

0 for rij 4 rc

(

; for rij � rc (19:4)

G2
i ¼

X

ja i

e� Z r� rsð Þ2 � fc rij
� �

; (19:5)

G4
i ¼21� z

Xall

j;ka i

1 þ l cosyijk
� � z � e

� Z r2ijþ r2ikþ r2jk

� �

� fc rij
� �

� fc rikð Þ �fc rjk
� �

; (19:6)
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where rij is the inter-nuclear distance between atom i and j, yijk is the angle
centred at i atom with j, k being neighbours (i, j, k are atom indices). The key
ingredients in GTSD are the cutoff function fc that decays to zero beyond the
rc (see eqn (19.4)), the Gaussian-type radial function, and the trigonometric
angular functions. By changing five parameters, rc, rs, Z, z, and l , a set of G2

and G4 functions can then be generated; these serve to distinguish the
atomic environment of the centre atom i.

To improve the sensitivity of structural descriptors in learning global PES,
we have designed a series of new structural descriptors, power-type struc-
tural descriptors (PTSD), see eqn (19.7)–(19.12).

S1i ¼
X

ja i

Rn rij
� �

; (19:7)

S2i ¼
XL

m¼� L

X

ja i

Rn rij
� �

YLm rij
� �

�
�
�
�
�

�
�
�
�
�

2" # 1
2

(19:8)

S3i ¼21� z
X

j;k a i

1 þ l cosyijk
� � z � Rn rij

� �
� Rm rikð Þ �Rp rjk

� �
; (19:9)

S4i ¼21� z
X

j;k a i

1 þ l cosyijk
� � z � Rn rij

� �
� Rm rikð Þ; (19:10)
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S6i ¼21� z
X

j;k;la i

1 þ l cosdijkl
� � z � Rn rij

� �
Rm rikð ÞRp rilð Þ; (19:12)

In PTSD, S1 and S2 are two-body functions, S3, S4, and S5 are three-body
functions and S6 is a four-body function. The replacement of the Gaussian
function in GTSD by the power function in PTSD has several advantages: (i)
the computational cost in numerical calculations is reduced; (ii) the ad-
justable parameters are reduced from two (rs, Z) to one (n), which simplifies
the search for optimal parameters for the two-body function; (iii) the power
function when combining with the decaying cutoff function can create radial
distributions with flexible peak and shape, which fulfils a similar purpose to
the Gaussian function; (iv) the introduction of different powers (n,m, p) in the
three-body function can couple conveniently different radial distributions.

19.2.3 Neural Network Training

Once the network architecture is settled, the next step is to determine the
weights and biases (NN parameters) in each NN subnet, a process known as
the training of the NN. The number of weights and biases is typically
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104B 106 for the standard FFNN with two hidden layers and 40 nodes in each
layers. To train such a large number of NN parameters, a performance
function Jtot is defined (see eqn (19.13)),28,37 which measures the deviation of
the NN output with respect to the training set properties. The training
process will minimize Jtot until the accuracy of the NN predicted properties
reaches the preset criteria.36,38,39 The training set is a large structure dataset
on PES with accurate energetics and forces, most often computed from first
principles calculations.

Jtot ¼ JE þ r JF þ t Js ¼
1
2N

ENN � Ereal� � 2
þ

r
6N

FNN
k;a � Freal

k;a

� � 2
þ

t
18

sNN
ab � sreal

ab

� � 2

(19:13)

where r ¼1B 100 and t ¼0.1B 1. This Jtot allows the fitting of all three
properties simultaneously. For the global optimization of solids, both forces
and stresses must be accurate; the most convenient way to do this is to allow
the NN training to fit all three terms, either simultaneously or independently
(depending on the adjustable parameters, r and t , in eqn (19.13)).

Many gradient-based optimization algorithms have been used to optimize
the network weights and biases, such as stochastic gradient descent, con-
jugate gradient, Levenberg–Marquardt (LM) etc. It is generally accepted that
quasi-Newton second-order methods, such as Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) and LM, converge more rapidly to the
true minimum for large data sets. It should be mentioned that, compared to
the dominant computational effort required to generate the data set using
quantum mechanics calculations, the training of the NN is, in fact, not the
rate-determining step in the whole NN PES construction procedure.

19.2.4 Data Set Generation and SSW Global Optimization

Undoubtedly, the data set used for training the NN largely determines the
quality of the NN PES. Previous work utilizes either local PES data, e.g. the
MD trajectories of a single reaction, or the combination of local PES data
from different structural sources, e.g. solids, slabs, and clusters. To increase
the transferability of the NN potential, as well as to simplify data set gen-
eration, the structures produced from global optimization trajectories ap-
pear to be the better and more natural choice, which should represent as
differently as possible the chemical environment of atoms.

There are currently a variety of global optimization methods for structure
prediction, including, for example, simulated annealing,22 genetic algo-
rithm,23 basin hopping,24 and SSW25,26 etc., which should be able to search a
wide area on the PES, and identify unbiasedly the global minimum, even
starting from random structures. Among them, basin-hopping and genetic
algorithms transform the PES by overlooking the transition region between
minima and thus they are likely to miss important structural patterns at the
transition region. On the other hand, simulated annealing and minimum-
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hopping are based on extensive MD calculations at elevated temperatures,
and both methods are rarely utilized for global search in combination with
quantum mechanics (even DFT) calculations. Furthermore, the structure
patterns from the MD trajectories being closely related could be over-
whelmingly redundant for NN training and an iterative structure selection
scheme may be required to produce a compact data set. In our approach, we
use the SSW global optimization method for data set generation. In the
following, we introduce the method in detail.

The central idea of the SSW method combines bias-potential-driven dy-
namics40 and Metropolis Monte Carlo (MC).41 It manipulates smoothly the
structural configuration from one minimum to another on PES and relies on
Metropolis MC at a given temperature to decide acceptance of the move.
A series of consecutive minimum structures, both local and global, is gen-
erated in an SSW simulation, forming a continuous trajectory which can
provide key information on the reaction pathways between minima. The
method was initially developed for aperiodic systems,26 such as molecules
and clusters, and has been extended to periodic crystals.29

Each step in SSW, also termed an MC step, comprises three independent
parts: (i) climbing, (ii) relaxation, and (iii) Metropolis MC. As schematically
illustrated in a one-dimensional PES in Figure 19.1, such an MC step utilizes
the climbing module to move uphill and the relaxation module to locate the
minimum. Once a minimum is reached, the Metropolis MC is used to judge
whether the structure will be accepted or refused. The climbing procedure
lies at the heart of the SSW method and is elaborated below in detail.

The climbing module of the SSW involves repeated bias-potential-driven
structure extrapolation and local geometry optimization, which gradually
drags R0

t to a high energy configuration RH
t , where ‘‘t’’ is the index of the

current MC step (see Figure 19.1). Starting from the current minimum R0
t ,

SSW first generates a random direction N0
t , a normalized vector pointing to

a direction to change the current geometry. To enable an unbiased explor-
ation of PES, the initial direction N0

t by design combines two randomly
generated vectors, the so-called global random mode Ng

t and the local
random mode Nl

t, as eqn (19.14).

N0
t ¼

Ng
t þ kNl

t

Ng
t þ kNl

t

�
�

�
� (19:14)

where the mixing parameter k controls the relative proportion of these two
displacement directions. Specifically, Ng

t in our implementation is set as a
randomly generated normalized vector that obeys the Maxwell–Boltzmann
velocity distribution at 300 K, as utilized in standard molecular dynamics,
to generate the initial random velocity. As Ng

t distributes over a group of
atoms, it represents a gentle, global displacement of the atoms. By contrast,
Nl
t describes a stiff, local atomic move, and in our implementation, it is set

as a collision movement between two distant atoms. For example, the Nl
t

associated with an atom A (e.g., the first atom in a system) and an atom B
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(the second atom in the system) can be derived as eqn (19.15), using their
coordinates qA and qB. The atom pair A and B can be either chosen randomly
or learned from previous trajectories, as long as the two atoms are not in
close contact (i.e., their distance 4 3 Å).

Nl
t ¼

qB
qA
0
..
.

0

B
B
@

1

C
C
A �

qA
qB
0
..
.

0

B
B
@

1

C
C
A (19:15)

Because reactions with low barriers generally involve soft normal mode
directions, it would be ideal to soften the randomly generated N0

t towards
one eigenvector of the Hessian matrix with small eigenvalues (not neces-
sarily the lowest one). However, the direct computation of the Hessian is
expensive and not affordable in a PES search. To solve this, we have de-
veloped a numerical approach, the bias-potential constrained Broyden
dimer (BP-CBD) method,42 to soften N0

t using eqn (19.16)–(19.19).

R1 ¼R0 þ Nm � DR (19.16)

C¼
ðF1 � F0Þ �Nm

DR
(19:17)

VR1
¼Vreal þ VN (19.18)

VN ¼ �
a
2

� DR � Nm � N0
t

� � 2
(19:19)

Following the unbiased dimer rotation method,43 we have defined two
images separated by a fixed distance of R on PES, namely, R0 and R1 (see eqn
(19.16)). The rotation of the dimer by their force (F0 and F1) perpendicular to
the dimer vector Nm using constrained Broyden optimization (CBD)44 will
converge to the softest eigenvector of Hessian, and the local curvature (C in
eqn (19.17)) can be computed according to the finite difference equation. The
softest eigenvector is, however, often not the desired one for reaction as it
corresponds to the translational and rotational modes (C¼0) in the basin
region. Therefore, a biased rotation scheme as implemented in BP-CBD is
developed, in which the potential of R1 is modified as eqn (19.18), where VN is
the bias potential added to the real PES Vreal of R1 that is a quadratic function
of coordinates R1 along N0

t (see eqn (19.19)). As long as the parameter a (see
eqn (19.19)) is large enough, the biased rotation can guarantee the rotation of
dimer will not deviate far from N0

t . The force due to the bias potential in
constraining the dimer rotation can be evaluated straightforwardly.

Vmod ¼Vreal þ
XNG

n¼1

vn ¼Vreal þ
XNG

n¼1

wn � exp

"

�
Rt � Rn

t

� �
� Nn

t

� � 2

2 � ds2

#

(19:20)
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Fmod ¼Freal þ
XNG
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2 � ds2
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On moving from Rn
t to a high energy configuration RH

t , a modified PES
Vmod is utilized, as shown in eqn (19.20), in which a series of bias Gaussian
potentials vn (n is the index of the bias potential, n¼1,2. . . H) is added one
by one consecutively along the direction Nn

t and thus creates a series of local
minima Rn

t along the moving trajectory on the modified PES. Similar tech-
niques have been used in Metadynamics.40 The local minimum Rn

t is iden-
tified using local geometry optimization, where the force can be evaluated
according to eqn (19.21). The w and ds in eqn (19.20) control the height and
the width of the Gaussian function vn, respectively. While w can be com-
puted on-the-fly to guarantee the success of the uphill move, ds is left as an
adjustable parameter in the SSW simulation. It should be mentioned that Nn

t

will always be updated from the initial random direction N0
t at each Rn

t and is
then refined using BP-CBD rotation.

To sum up, the uphill movement from Rn
t to RH

t is a repeated procedure
containing (i) updating the direction Nn

t at Rn
t ; (ii) adding a new Gaussian

function vn and displacing Rn
t along the direction Nn

t by a magnitude of ds;
and (iii) relaxing to Rnþ 1

t on the modified PES.
The overall efficiency of the SSW method depends on the choice of the step

length of surface walking ds and the maximum number of Gaussian poten-
tials H. A typical value of ds ranges from 0.2 to 0.6 Å, being 10% to 40% of a
typical bond length. The maximum number of Gaussian potentials (H) is also
system-dependent and in general a number in the range of 6B 15 is a sensible
choice. With large ds and largeH, a large scope of PES can be explored rapidly,
but at the expense of resolution on the reaction pathway between minima.
Typically, for complex Lennard-Jones clusters (e.g., LJ75 with multiple funnels
and high barrier), the SSW simulation requires 300B 400 energy/force evalu-
ation per MC step with ds¼0.6 and H¼14. It takes typically 70B 80% com-
putational efforts (energy and gradient evaluation) on the climbing and the
remaining 20B 30% on relaxation to a minimum.

19.2.5 Self-learning Procedure

The self-learning procedure is described briefly as follows, also see
Figure 19.3. In the first stage, an initial dataset is constructed by performing
in parallel short-time SSW sampling based on first-principle DFT calcula-
tions. These DFT calculation are often restricted to small systems (typically
below 20 atoms) and with a low accuracy calculation setup to speed up the
global PES sampling. After the PES data is obtained from SSW, a small da-
taset is randomly selected and computed using DFT with a high accuracy
calculation setup. This stage produces a dataset with the most common
atomic environment for the target PES.
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The second stage generates an NN potential using the current first
principles dataset. The involved hyper-parameters utilized in our NN
training can be found in Table 19.1. Our G-NN potential typically has two or
three hidden layers and 50B 120 neurons for each layer, which leads to the
number of network parameters (weights and biases in NN) in the range of
104B 106. The optimization of such a large parameter space is achieved via
the quasi-Newton L-BFGS method by simultaneously fitting the total en-
ergy, force, and stress from first principles that constitutes the cost func-
tion Jtot in eqn (19.13). The training procedure is controlled by a number of
hyper-parameters, such as the relative weight among energy, force, and
stress (1 : r : t in eqn (19.13), network weight initialization method, type of
neuron activation function, training epochs etc.45,46 Due to the structural
variety of the global PES, the typical accuracy for G-NN is 5B 10 meV per
atom for root mean square errors (RMSE) of energy and 0.1B 0.2 eV Å� 1 for
RMSE of force.

Figure 19.3 Self-learning procedure for the generation of global NN potential
(G-NN).
Reproduced from ref. 27, https://doi.org/10.1063/1.5113673, under the terms
of the CC BY 4.0 license, http://creativecommons.org/licenses/by/4.0/.

Table 19.1 A prototype of hyperparameters used in our previous works.

Hyperparameters Values

Optimization method L-BFGS
Weight ratio 1 : r : t 1 : 5 : 0.05
Number of hidden layers 2B 3
Neurons number in input layer 100B 400
Neurons number in each hidden layer 50B 120
Weight initialization method Xavier initialization
Type of neuron activation function tan h3

Size of training data 20 000B 100 000
Training epochs B 20 000
Number of weights and bias 104B 106
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The third stage expands the dataset by carrying out long-time SSW global
PES sampling using the current NN potential, the so-called SSW–NN
method. These SSW–NN simulations start from a variety of initial struc-
tures with different morphology, including bulk, surface and clusters, dif-
ferent chemical compositions, and different numbers of atoms per unit cell.
A small additional dataset is thus obtained from the SSW sampling trajec-
tories, containing the structures on PES either randomly selected or ex-
hibiting a new atomic environment (e.g. out-of-bounds in structural
descriptor, unrealistic energy/force/curvature). After calculating these add-
itional data by DFT, they are added into the training dataset and the whole
self-learning procedure returns back to the previous stage.

Typically, afterB 100 iterations, a robust and accurate NN potential can be
obtained with a compact training set that contains the most representative
structures. We emphasize that it is better to adopt consistent and high ac-
curacy calculation setups in constructing the training dataset using first
principles calculations, which can benefit greatly data transferability and
compatibility between systems; this also helps to reduce the NN fitting error.

19.3 Applications

19.3.1 PES Exploration

The thermodynamics and kinetics of a material are determined by the
underlying PES. This can be conveniently and efficiently established using
an SSW–NN simulation. In recent years, we have mapped out the PESs for a
number of systems, e.g. single element crystal (boron),28 molecular crystal
(ice),47 metal oxide (TiO2, ZnCr2O4).

48,49 The PESs of TiO2 and ZnCr2O4 are
projected onto a two-dimensional contour map, as shown in Figure 19.4,
where the structural order parameter (OP) and the relative energy are the
x- and y-axis. The density of the map represented by different colours indi-
cates the density of states on PES, showing the energy degeneracy of struc-
tural configurations at the same structural OP.

The OP is defined by eqn (19.22).50

OPl ¼

 
4p

2l þ 1

Xl

m¼� l

j
1

Nbonds

X

ia j

e�
rij � rc
2rc YlmðnÞj2

! 1=2

(19:22)

where Ylm is the spherical harmonic function of degree l and order m; n is
the normalized direction between all bonded atoms; i and j are atoms in the
lattice, rij is the distance between atom i and j, and rc is set at 60% of the
typical single bond length for i and j atoms. Nbonds is the number of bonds.
By choosing a suitable degree, the order parameter can measure the short-
and medium-range ordering of atoms in the lattice and thus distinguish
important crystal structures and amorphous structures. For example, it is
often straightforward to tell the coordination number from the OP value,
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e.g. six-coordinated Ti atom with OP2 ¼0.3B 0.5 and five-coordinated Ti
atom with OP2 ¼0.6B 0.8 in TiO2 PES.

As shown in Figure 19.4, the PESs of the TiO2 and ZnCr2O4 have rather
different shapes: for TiO2 the PES is shaped somewhat like a butterfly, while
for ZnCr2O4 the PES is funnel-shaped. At the bottom of the PES, where the
low energy structures lie, the TiO2 PES demonstrates that there are many
energetically similar TiO2 crystal phases but with different structural pat-
terns, having multiple funnels in the butterfly shape. By contrast, the
ZnCr2O4 PES has only a well-defined global minimum, a spinel type struc-
ture; all other structures are much higher in energy. It is not surprising that
more than 10 different TiO2 crystal structures have been synthesized to date
(e.g. anatase, rutile, (R) and (H) etc.), while only a spinel phase is known for
ZnCr2O4.

In addition to the global minimum, the global PES can also reveal un-
known metastable structures, which may act as important phase-transition
intermediate states or exhibit attractive physicochemical properties. From
the global PES of ice, we have identified the low energy ice phase with va-
cancies, which are the key intermediate in the lowest energy pathways for the
cubic-to-hexagonal solid phase transition, a reaction central to ice nucle-
ation.47 We found that the solid transition is facilitated by water vacancy at
the ice basal plane interface. The results have profound significance for
understanding some everyday phenomena that we observe, ranging from
humidity in clouds to the unusual slipperiness of ice. For the TiO2, it is
known in general chemistry that the [TiO6] octahedron is the common
building block for TiO2 crystals. However, a new class of unprecedented

Figure 19.4 Global PESs of TiO2 and ZnCr2O4 as determined from SSW–NN global
search. The x axis is the common structure fingerprint for the crystal,
namely, the distance-weighted Steinhardt-type order parameter (OP)
with different angular moment L¼2, 4, 6, which can distinguish
different minima, and the y axis is the relative energy (DE) of minima.
Reproduced from ref. 48 with permission from American Chemical
Society, Copyright 2018, and from ref. 79 with permission from
Springer Nature, Copyright 2019.
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microporous TiO2 crystalline phases, named TiO2(TB) in Figure 19.4, have
been identified from the global PES, which features a special [TiO5] trigonal
bipyramid building block, a large pore size (5B 7 Å), and high thermal sta-
bility.48 These microporous materials are predicted to be candidate anode
materials for Li-ion and Na-ion batteries.51

19.3.2 Ultrasmall Au Supported on CeO2

The atomic structure of supported catalysts must rank top in PES exploration
problems. The dual-complexity of nanoparticles/support and the large size of
the interfacial system are two key challenges to global structure search. With
the advent of SSW–NN, it becomes feasible to answer some long-standing
puzzles about supported catalysts, for example, the nature of cationic Au on
ceria support. The past two decades have witnessed tremendous research
interest in Au-based catalysts that may exhibit outstanding low-temperature
catalytic ability for a wide range of reactions.52,53 Among the catalysts, ceria
supported gold (Au/CeO2) can catalyze the water-gas-shift (WGS) reaction
starting fromB 350 K to produce high-grade hydrogen; it has a high stabil-
ity.54,55 Owing to the good oxygen storage ability,56 it was long assumed that
the oxygen vacancies on the CeO2 support play key roles in the Au/CeO2

system to stabilize the Au nanoparticles.57 However, seminal work by Fu
et al. suggested that oxidized gold (e.g. Au1 or Au31 ) is the active site for the
WGS reaction.54 The origin of the high catalytic activity of Au/CeO2 has been
a hot subject of debate ever since.

To explore the configurations of ultrasmall Au clusters on CeO2 and de-
termine their thermodynamics and kinetic stability, we have performed the
SSW–NN and enhanced molecular dynamics (MD)58,59 simulation to obtain
the AuCeO global dataset and to build a robust and accurate AuCeO G-NN
potential. Our simulations contain structures from 14 to 444 atoms per cell
and cover different Au : Ce : O ratios with different morphology forms e.g.
bulks, layers, and clusters. The final AuCeO global dataset contains 33 654
structures. The AuCeO G-NN potential contains 186 PTSDs for each element,
and compatibly, the network involves three-hidden layers (186-60-50-50-1
net), equivalent toB 51 000 network parameters in total. The final RMSE of
energy and force are 6.115 meV per atom and 0.152 eVÅ� 1 respectively.

By establishing the ternary Au-Ce-O G-NN potential based on a first
principles global dataset, we have searched for the global minima for a series
of Au/CeO2 systems, the Au cluster size from four to twelve atoms and the
CeO2 support including pristine, the surface with O vacancy and the surface
with structural defects (missing O-Ce-O, CeO2-SD), see Figure 19.5a–i. The
energetics of Au clusters on ceria can be evaluated by relating the supported
system to the unsupported surface, Au bulk metal and the O2 molecule (if
necessary). As shown, the formation energy (EAuform) of Au clusters on pristine
CeO2 drops gradually from þ 0.78 eV to þ 0.69 and to þ 0.64 eV (eV/Au atom).
They are generally poorer compared to them on the other two CeO2 surfaces,
suggesting the ultrasmall clusters do not prefer to anchor on a pristine
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surface, and the larger cluster is thermodynamically more favoured. The
presence of the O vacancy, interestingly, does not much increase the EAuform
for the Au clusters. The similar energetics for Au on pristine CeO2 and CeO2

with O vacancy indicates that the O vacancy does not induce much add-
itional charge transfer, e.g. from CeO2 support to Au in forming the nega-
tively charged Au cluster. In fact, the additional electrons due to the missing
of a surface O are stored in nearby surface Ce atoms, forming two Ce31 . This
explanation is supported by DFT calculations that the net magnetic spin for
Aux/CeO2–Ov systems is generally larger than 2, suggesting that the Au ad-
sorption does not quench the spin on Ce atoms. On the other hand, the
oxidized Au clusters on CeO2-SD are much stabilized as reflected by the
lower EAuform. In particular, Au4O2/CeO2-SD has a negative formation energy,
� 0.085 eV/Au atom, which suggests that the CeO2-SD can act as the an-
choring site for ultrasmall oxidized Au clusters below 4 Au atoms. With the
increase of the cluster size, the energetic preference at the CeO2-SD sites
disappears gradually.

Our results show that the ultrasmall cationic Au clusters attaching to sur-
face structural defects are the only stable structural pattern, e.g. Au4O2/CeO2-
SD, where Au clusters can donate electrons to the underlying Ce mediated by
the Au–O bonding (see Figure 19.5j). The Au4O2/CeO2-SD is believed to be the
potential stable active structure for an ultrasmall Au cluster on the CeO2

surface. The other clusters on different CeO2 surfaces have a strong energy
preference to grow into bulky Au metal. We demonstrate that the global PES
exploration is critical for understanding the morphology of metal clusters on
oxide support, which now can be realized via the NN method.

19.3.3 Hydrogen Evolution Reaction on Amorphous TiOxHy

Black titania (TiO2), which absorbs strongly across the entire visible-light
spectrum, has been found to exhibit hydrogen evolution reaction (HER)
activity several orders higher than convention TiO2 material.60–65 Syn-
thesized by hydrogenating pristine TiO2, the as-synthesized black TiO2

commonly exhibits a core–shell structure with the amorphous shell, a few
nanometers thick, coated on the anatase crystals.61,66–68 The amorphous
shell is believed to provide the catalytic active site and to be responsible for
the enhanced HER activity. However, structure determination for the
amorphous shell is challenging both experimentally and theoretically,
without even mentioning the need to explain the high HER activity.

To resolve the HER active sites on the amorphous TiOxHy shell, we have
performed SSW–NN simulations to obtain the TiOxHy global dataset with
143 786 structures and build a robust and accurate TiOxHy G-NN potential.
The structures in the database cover different Ti : O :H ratios, mainly Ti4O7,
Ti4O8, Ti4O8Hx x¼1B 4, Ti8O16Hx, x¼1B 4 with bulk, layer, and cluster
forms, and also contain large surface systems such as Ti56O112Hx and mo-
lecular systems (H2, H2O). The TiOxHy G-NN potential utilizes 201 PTSDs
for each element, i.e. 77 two-body PTSDs, 108 three-body PTSDs and
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Figure 19.5 Global minimum structures for Au clusters on CeO2 determined by
SSW–NN. (a–i) Structure snapshots of Au clusters on three different
CeO2 surfaces. For Aux/CeO2-SD, both the top and the side views are
shown for clarity. O atoms are in red/pink, and Ce atoms are in white.
The surface layer O and the subsurface O are in red (darker) and pink
(lighter), respectively. Au atoms are in yellow (for example, the central
cluster in (g)). The oxygen vacancy is indicated by dashed circles in Aux/
CeO2-Ov. The embedded Au atom is highlighted by a blue rectangle. (j)
The formation energy of Au cluster relative to the CeO2 surface and Au
bulk.
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19.1 Introduction
Heterogeneous catalysts are notable for their great complexity of material
composition and surface structures. There is a long history of both experi-
mental and theortical struggling to resolve the active site of catalysts that
are responsible for activity and selectivity.1–4 Recent experimental progress
is represented by high spatial resolution techniques, e.g. the spherical
aberration-corrected high-resolution transmission electron microscope,
and synchrotron-based measurement, e.g. extended X-ray absorption fine
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