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CONSPECTUS: Atomic simulations based on quantum mechan-
ics (QM) calculations have entered into the tool box of chemists
over the past few decades, facilitating an understanding of a wide
range of chemistry problems, from structure characterization to
reactivity determination. Due to the poor scaling and high
computational cost intrinsic to QM calculations, one has to either
sacrifice accuracy or time when performing large-scale atomic
simulations. The battle to find a better compromise between
accuracy and speed has been central to the development of new
theoretical methods.
The recent advances of machine-learning (ML)-based large-scale atomic simulations has shown great promise to the benefit of many
branches of chemistry. Instead of solving the Schrödinger equation directly, ML-based simulations rely on a large data set of accurate
potential energy surfaces (PESs) and complex numerical models to predict the total energy. These simulations feature both a high
speed and a high accuracy for computing large systems. Due to the lack of a physical foundation in numerical models, ML models are
often frustrated in their predictivity and robustness, which are key to applications. Focusing on these concerns, here we overview the
recent advances in ML methodologies for atomic simulations on three key aspects. Namely, the generation of a representative data
set, the extensity of ML models, and the continuity of data representation. While global optimization methods are the natural choice
for building a representative data set, the stochastic surface walking method is shown to provide the desired PES sampling for both
minima and transition regions on the PES. The current ML models generally utilize local geometrical descriptors as an input and
consider the total energy as the sum of atomic energies. There are many flavors of data descriptors and ML models, but the
applications for material and reaction predictions are still limited, not least because of the difficulty to train the associated vast global
data sets. We show that our recently designed power-type structure descriptors together with a feed-forward neural network (NN)
model are compatible with highly complex global PES data, which has led to a large family of global NN (G-NN) potentials.
Two recent applications of G-NN potentials in material and reaction simulations are selected to illustrate how ML-based atomic
simulations can help the discovery of new materials and reactions.
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1. CHALLENGES TO ATOMIC SIMULATION IN
CHEMISTRY

Material and reaction simulations are at the frontline of
chemistry research. These simulations typically deal with slow
chemical bond evolutions in complex environments, such as on
surfaces, interfaces, and heterojunctions of materials. Unsurpris-
ingly, they often resort to quantum mechanics (QM)
calculations,4−7 i.e., by solving the Schrödinger equation, to
obtain accurate energetics and other thermodynamics quanti-
ties. Even with the power of modern supercomputing facilities,
these QM calculations are still severely limited by the spatial and
temporal scale of the target system, typically within hundreds of
atoms and a few picoseconds.8 Considering the time-scale of
chemical syntheses (e.g., from seconds to hours) and the typical
microstructure of synthesized materials (e.g., from nano to
micrometers), QM calculations are apparently doomed in the
battle toward “simulating experiments on a chip”.
With the recent breakthroughs in deep learning methods and

the advancement of graphics-processing-unit (GPU) comput-
ing, the 21st century has witnessed a boom in artificial
intelligence applications.9 The marriage between artificial
intelligence and simulation techniques has brought new hopes
for large-scale atomic simulation. Historically, the introduction
of advanced machine learning (ML) techniques into atomic
simulations can date back to 1990s for the potential energy
surface (PES) construction of small systems (e.g., molecules
interacting with a frozen surface, considering several degrees of
freedom10,11). The idea is to utilize a ML model, such as neural
networks (NNs), to fit the QM PES data set, which produces a
numerical function, i.e., the ML potential, for fast PES
evaluation. Equipped with highly complex numerical functions,
ML potentials can reach the required level of accuracy to
properly describe chemical reactions beyond those of traditional
force field methods. The progress toward large-scale atomic
simulations for materials and chemical reactions in general has
been unfortunately slow, not least because of the high cost in
collecting QM PES data set. For a long period, the methodology
development has been center stage, focusing on inventing new
PES sampling methods and designing new ML models to train
large data sets.1,12−30

As an alternative toQMcalculations, any qualifiedMLmodels
for atomic simulations require, to warrant their usage, high
computational speeds using low-scaling calculations, with an
accuracy comparable to QM calculations. While this can indeed
be achieved with the increasing complexity of numerical
functions, it was soon realized that the predictivity and the
transferability of ML models are equally, if not more, important

in applications. Since there are innumerable materials and
reactions, and as a training data set will never be complete, one
has to set up some basic guidelines for ML models that can
maximally enhance the predictivity and the transferability. Three
aspects, (1) the representativity of the data set, (2) the extensity
of ML models, and (3) the continuity of data representation,
must rank top in the list of guidelines.

1.1. Representativity

Common to all ML applications, the quality of a data set used for
training is always of most concern, which determines largely the
predictivity of ML models. The data set should ideally cover as
many as possible different structures, which acts as a
representative sample to all likely structures on a global PES.

1.2. Extensity

As energy is an extensive quantity and is the output of ML
models, it is essential that ML models are able to describe
different sizes of systems, from atoms to bulky materials, on an
equal footing.

1.3. Continuity

To obtain the first derivative of energy, i.e., force, ML models
should be able to produce a continuous derivative for energy
with both a high numerical accuracy and a high efficiency.
This Account serves to overview the important methodology

progress for ML-based atomic simulations on the aforemen-
tioned three aspects. We will highlight in particular the
stochastic surface walking global optimization with the neural
network potential (SSW-NN) method1,24 developed by our
group that satisfies all basic guidelines and already proves its
power in large-scale atomic simulations. The SSW-NN method
is implemented in LASP30 software (Large-scale Atomic
Simulation with Neural Network Potential; accessible from
www.lasphub.com), which implements the PES data generation,
NN potential training, and atomic simulation in one platform.
On the basis of LASP, a large set of global NN (G-NN)
potentials is now established via the automated global-to-global
approach,1 which supports a wide range of elements across the
periodic table.

2. GLOBAL DATA GENERATION

Unlike QM calculations, where the high-quality PES is solved
from the Schrödinger equation, ML-based atomic simulation
cannot be performed until a high-quality PES data set for
trainingML potential is available. This very first step turns out to
be the most computationally extensive, which has largely limited
the wide applications of ML-based atomic simulation for years.
The key solution for this is to design efficient PES sampling

Figure 1. (a) A schematic of the 1D PES. The dotted lines indicate the transformed PES, as treated by basin hopping and genetic algorithm
(Lamarckian-type) methods; the crossed area indicates the filling of the energy wells by added potentials, as utilized in metadynamics. (b) An
illustration of the SSW method in a 1D PES (also see eq 1). The red, orange, purple, and green curves represent the real PES (Vreal), the Gaussian
functions (vn, n = 1, 2, ...H), the modified PES, and the searching trajectory, respectively. (c) SSW trajectories for the PES global exploration of C4H6

molecules. The lowest energy trajectory is highlighted by the red color. For comparison, the lowest energy pathway is shown as a black curve that is
extrapolated using the intrinsic reaction coordinate. Reproduced with permission from ref 50. Copyright 2013 American Chemical Society.
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methods for data set generation. The data set should be
representative and compact.
Naturally, a simple way to obtain a representative data set is to

exploit the existing database. For organicmolecules, for example,
GDB-X31 and QM-X32,33 (X = the number of non-H atoms) are
well-designed chemical data sets, containing a vast chemical
space with virtually all possible molecules satisfying the chemical
bonding octet rule. Smith et al. utilized the normal mode
sampling (NMS) method to displace the database molecules
and obtain a huge data set of 17.2 million structures.22 These
structures are, however, limited to the PES regions near minima,
as indicated in Figure 1a, which cannot be utilized for reaction
exploration.
In principle, the global PES sampling methods, as schemati-

cally illustrated in Figure 1a, would be the best choice for PES
data generation. Among various methods applied to date, the
most popular one remains to be molecular dynamics (MD)-
based approaches, as represented by simulated anneal-
ing.12,14,26,27 Simulated annealing explores PES via repeated
heating and cooling cycles and have been utilized in many
publications.35−37 The enhanced MD method such as
metadynamics38,39 and iMD-VR40 can be the valuable supple-
ment to add the reaction data. The active learning approach
developed by Smith et al. was also utilized to select distinct data
from MD trajectories.41,42 Nevertheless, MD sampling for data
generation suffers from the “short-sighted” problem due to the
exponentially low probability to overcome high reaction barriers
at low temperatures and the preference of trapping at high-
entropy structure regions at high temperatures. As a result, the
PES data thus generated are often overwhelmingly redundant,
being highly localized to a few input phases (also discussed
below). This will inevitably lead to the inadequacy of thus-
obtained ML potentials for predicting unknown materials and
reactions. On the other hand, other global optimization
methods, such as basin-hopping,43 the evolutionary algorithm
(EA),28 the genetic algorithm (GA),44 and the particle swarm
optimization method (PSO),29 have also been tested for on-the-
fly ML model training of materials in recent years. These
methods transform the PES by overlooking the transition region
between minima to realize a fast global minimum (GM) search.
They generally obtain the PES data from the structural
relaxation trajectories and thus may well miss key reaction
channels at the transition regions (see Figure 1a).
In 2017, our group proposed to utilize the SSW global

optimization trajectories for generating a PES data set, which
turns out to be successful for a wide range of materials and
reactions.1−3,24,45−49 The SSW method was initially developed
for global optimization and pathway searching of aperiodic
systems, such as molecules and clusters, and was then extended
to periodic crystals.50−52Compared to other global optimization
methods with aggressive structure perturbation, the SSW
method visits PES with a small step-size by exploiting the
second-derivative (vibrational mode) information. SSW is able
to sample the structural patterns at the transition region, and this
allows finding unknown chemical reactions.
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The SSW method combines bias-potential-driven dynamics53

and theMetropolisMonte Carlo (MC)method.54The former is
a standard technique utilized to overcome high barriers between
minima on a PES, as shown in eq 1, where the consecutive bias
potentials (Gaussian function, vn, n = 1 to H) are added to
modify the PES (Vmod), moving a structural configuration from
minima to a high energy position on the PES (see Figure 1b),
and the latter is a common method in PES sampling to select
states according to the Boltzmann distribution, as shown in eq 2.
The SSW method adopts a random mode generation and a
constrained softening technique to obtain an optimal mode (Nt

n

in eq 1), along which the bias-potentials are added. Figure 1c
shows the SSW trajectories for C4H6 molecules,50 where SSW
can overcome the high barriers on PES and identifies both
minima and the low energy pathways between them.
The differences between MD and SSW in PES sampling can

be clearly illustrated by Figure 2, where we performed both the

MD simulation and a variable-cell SSW search on a TiO2 crystal
containing 48 atoms. The MD simulation is carried out at 1500
K and 1 atm, with an isothermal−isobaric (NPT) ensemble for
0.5 ns. Using the SSW and MD trajectories with similar total
energy/force evaluation steps (5 × 105), we randomly collected
5000 configurations for each to view the 2D PES contour plots,
as shown in Figure 2a and b, where the energy is plotted against
the distance-weighted Steinhart order parameter (OP2).

34,55We
can see immediately that SSW visits a large area of the PES,
covering tens of different crystal phases, while MD only explores
the local PES around the initial structure, i.e., the rutile phase,

Figure 2. Comparison of data generated by SSW (a and c) and MD (b
and d). Panels a and b show the PES contour plot of SSW and MD
trajectories for the TiO2 system. The x-axis is a distance-weighted
Steinhart order parameter (OP2),

34 and the y-axis is the total energy of
the system corresponding to the GM. The color indicates the density of
states of structures. Panels c and d show the three most distinct features
of the Ti atoms in SSW and MD trajectories from the principle
component analysis (PCA) based on the structure descriptors of the
TiO G-NN potential.30
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even at 1500 K (TiO2 melts above 2000 K).56 In addition, we
also analyzed all the data by using principle component analysis
(PCA), which is a technique to classify data sets according to
their features. On the basis of a set of atomic structure
descriptors of the Ti element (described in detail section 3
below) used in the TiO G-NN potential (accessible from the
LASP Web site), PCA identifies the three most distinguishable
feature components, namely PC1 to PC3. It can be found that
the data from MD trajectories are limited in the atomic
environment, as reflected by the small space. For comparison,
the SSW data are more diverse, which covers the majority of the
MD data and extends to the atomic environment belonging to
many other solid phases.
Provided with the global data set, the thus-generated ML

potential (also see section 3) can have both good predictivity
and transferability. In Figure 3a, we have compared the energies
of three TiO2 minima (48 atoms) using DFT and the TiO G-
NN potential.1 Our G-NN potential is trained from SSW global
data sets containing no more than 36 atoms, and thus, the 48-
atom structures can be a good test for the extensity and
transferability of the potential. The three minima are rutile, and
the two other high energy configurations have P1 symmetry that

cannot be reduced to any smaller unit cell. For the rutile phase,
the energy difference between DFT and G-NN methods is only
0.46 meV/atom. And the difference increases to 1.9 and 4.2
meV/atom for structure B (a defective anatase phase) and C (a
porous structure), respectively. It suggests that the global data
set with only systems below 36 atoms does already contain the
key information required to compute the energy of 48-atom
systems. Figure 3b shows the typical computational time for NN
and DFT benchmarked on the TiO2 system, where NN as a
linearly scaling approach can be significantly faster than DFT in
large-scale atomic simulations.

3. MACHINE LEARNING MODELS AND DATA
DESCRIPTOR

Once a data set is established, one can exploit the PES quantities
of the data set, including the structure coordinates, the total
energy, and the atomic forces, to train a ML model. The
procedure belongs to a standard application of supervised
machine learning, and thus, there are many off-the-shelf
mathematical functions and numerical fitting methods that can
be selected for immediate usage. However, in order to produce a
goodML potential, two basic rules must be obeyed, which guide
the recent design of ML models and the selection of their input,
namely, the data descriptors.
Rule 1 involves the invariance to the system size. ML models

need to be flexible to describe systems with different sizes
accurately, from atoms to solids. The supercelling of the
structure (the increase of atom numbers) should not change the
energy per atom.
Rule 2 involves continuity in data descriptors. For yielding

atomic forces with high numerical accuracy, the input of the ML
model should be continuous and derivable with respect to the
atomic coordinate.
Restricted by these two rules, ML models adopt the local

properties as inputs that are invariant to the system size; their
data descriptors preserve the translational, rotational, and
permutational invariance of system in order to yield a
continuous and derivable PES.
In fact, the empirical force field methods57 developed since

the 1960s that decompose total energy into two-body (bond),
three-body (angle), and four-body (dihedral angle) terms obey
the above two rules. However, these internal coordinates, e.g.,
bonds and angles, are often too short-ranged to describe solid
materials, and the function forms are also not complex enough to
simulate chemical reactions. In 2007, Behler and Parrinello
proposed a ML model,12 named as a high-dimensional neural
network (HDNN), where the total energy of system is expanded
as the sum of individual atomic energies, as shown in eq 3. The
atomic energy can be trained with a feed-forward neural network
(NN) by linking the local chemical environment as represented
by a set of structure descriptors Di with the total energy, as
shown in eq 4. Each Di is an atom-centered symmetry function
(ACSF), which are constructed by summing a series of two-
body radial and/or three-body angular functions.

∑=
=

E E
i

N

i

1

atoms

(3)

=E f D( )i i (4)

Since then, many ML models were proposed and, almost
without exception, utilize the basic principles of HDNN, i.e., eqs
3 and 4 (also see Figure 4). The local chemical environment, by

Figure 3. (a) The energy versus the system size plot in the TiO2 system.
Three structures are named as A (rutile), B, and C (low symmetry
structures). The energy difference (meV/atom) between DFT (red)
and G-NN (blue) is indicated, which is invariant with the change of the
system size. (b) Computational time (s/CPU) of a single point
calculation for different size TiO2 systems (12, 24, and 48 atoms in a
unit cell) by DFT (black) and NN (red) methods. Panel b is
reproduced with permission from ref 1. Copyright 2017 Royal Society
of Chemistry.
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contrast, has many alternative representations, such as the
Gaussian-type ACSF proposed by Behler and Parrinello,12,13 the
smooth overlap of atomic positions (SOAP),16,21,25 graph
convolutional neural networks (GCN),23,26,58 the power-type
structural descriptor (PTSD) developed by us,1,24,30 and so
on.19,27 Figure 3a also shows the G-NN potential that follows
eqs 3 and 4 and utilizes PTSDs as inputs for the potential, which
indeed satisfies quite nicely rule 1, where the same structure with
different supercell sizes produces exactly the same energy per
atom.
The PTSD proposed by our group in 2018,24 as shown in eqs

5−12, belongs to ACSF for representing the atomic environ-
ment (Figure 4). A set of structure descriptors labelled as S1−S6
can be obtained by combining these atom-centered power-type
structure descriptors S1−S6. It is a set of highly sophisticated
descriptors, which are developed to be compatible with the SSW
global optimization data set. In PTSD, the traditional two-body
and three-body terms are included in addition to the inclusion of
four-body terms and the introduction of spherical functions,
which enhance the structure discrimination. In particular, the
combination of the power function and spherical harmonic
function in S2 and S5 mimics the atomic wave functions, which

provides a convenient way to couple the radial and angular
information of an atom. The four-body term in S6 can describe
the dihedral angle and is thus critical for describing organic
molecular configurations and reactions.
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In the eqs 5−12, rij is the internuclear distance between atom i
and j and θijk is the angle centered at i atom with j and k being
neighbors (i, j, and k are atom indices). The key ingredients in
the PTSD are the cutoff function fc that decays to zero beyond
the rc (eq 5), the power-type radial function, the trigonometric
angular functions, and the spherical harmonic function. S1 and S2

are two-body functions; S3, S4, and S5 are three-body functions;
and S6 is a four-body function. Obviously, the PTSD functions

Figure 4. Illustration of ML models. Left: The atomic vector Di is
constructed from a series of element-discriminated functions based on
coordinates (see eqs 5−12 for power-type structural descriptor
(PTSD) functions24). Right: ML models that decompose the system
properties, including energy, force, and stress (Etot, Ftot, and Stot) as the
sum of atomic contributions (Ei, Fi, and Si, where i and j are the atom
indices), where the atomic vector Di is utilized as the input for the
models.

Figure 5. (a) Plots of the radial part of the PTSDs, Rn (see eq 6), for the same cutoff radius of 3.2 Å but with different powers n. The x-axis is the
distance r, while the y-axis is the function value scaled to (0, 1). (b and c) Plots of the two-body functions of PTSDs (S1 and S2) and three-body and
four-body functions of the PTSDs (S3−S6) for a center atom in different coordination environments corresponding to structures 1 to 8 labeled on the
x-axis. Legend: structure 1, line; structure 2, triangle; structure 3, square; structure 4, pentagon; structure 5, hexagon; structure 6, tetrahedron; structure
7, cube; structure 8, octahedron. Panel a is reproduced with permission from ref 24. Copyright 2019 Royal Society of Chemistry.
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also satisfy rule 2, where the derivatives of the atomic coordinate
can be derived analytically.
Figure 5a shows that the power function with only one

parameter (n) when combined with the decaying cutoff function
can create radial distributions with flexible peaks and shapes,
which effectively extract the structure information in that
particular radial window. The combination of different powers
(n, m, and p) in three-body functions can couple conveniently
different radial distributions. Figure 5b and c illustrate a set of S1
to S6 values for describing the atoms with different coordination
shells, i.e., two- (line), three- (triangle), four- (square), five-
(pentagon), six- (hexagon), four- (tetrahedron), eight- (cube),
and six-coordination (octahedron) shells. All bond distances are
the same (2 Å) in these structures, and the power functions in all
PTSDs have the same power of n = 2. As shown in Figure 5b, the
spherical harmonic function with a different angular moment of
L = 2, 4, or 6 (see eq 8) can extract angular information of the
local environments even in two-body functions. Figure 5c shows
that the S3−S6 three-body and four-body terms can further yield
different values for the local environment, particularly for high-
coordination numbers (>3) and thus are useful complements to
the two-body terms. It is the large variation of the PTSD values
that achieve the ability to sensitively discriminate different
structures.
Similar to many possible flavors of data descriptors, there are a

zoo of numerical forms for ML models, which differ in the
number of fitting parameters and the complexity of the function
form.While feed-forward NNs are often the choice, the function
forms in other ML techniques have also been used, such as
Gaussian process regression (GPR),17,18,61,62 kernel ridge
regression (KRR),28 support vector machines (SVMs),63,64

and spectral neighbor analysis potentials (SNAPs).65 It is not
straightforward to compare different ML models directly due to
different target systems involved in the literature. Nevertheless,
we have compiled the reported accuracy of different ML models
in Table 1 and Table 2, where the data sets are all constructed by

global optimization techniques or from an existing large
database and not from a single MD trajectory or a single target
reaction. These examples thus represent the state-of-the-art for
constructing PES with ML potentials.
Specifically, Table 1 lists theML potentials by using non-SSW

data collection methods, including MD, NMS, GA, and PSO.
They can be compared with Table 2, which lists the G-NN
potentials reported so far. Both Table 1 and Table 2 contain
CHON and B potentials. The CHON potential (ANI) in Table
1 utilizes the NMS for data collection and can be used only for
predicting the structures nearby minima, while the CHON G-

NN can be used for reaction prediction, as shown below in
section 4.2. For a B potential, a single-element system with
diverse phases, a high-accuracy ML potential is technically
difficult to construct: the reported accuracy from SSW-NN data
sets is 12meV/atom, and that from the PSO data sets is above 50
meV/atom.
It should be emphasized that the complexity of functional

forms and the number of structure descriptors required for ML
are relevant to the structure diversity of the data set. This can be
seen from the network size for different G-NN potentials listed
in Table 2, where two to three hidden layers are generally
required in NN architecture for achieving the low RMSE in
energy (e.g., below 10 meV/atom).

4. APPLICATIONS

Due to the local representation of data descriptors and the
numerical functions in ML models, ML potential simulations
are, in principle, linear scaling with the system size,67 and the
speed can be more than 4 orders of magnitude faster than DFT,
even for medium size systems (e.g., 48 atoms, also see Figure
3b).1 Thus, a major field of ML potential applications is
structure prediction, e.g., searching for new crystal phases,1,59

and recently, ML potentials are also utilized to expedite the
reaction space exploration for finding reaction mechanisms.
Recent years have seen interesting ML applications in material
science, cluster science, and biology.44,68,69 In the following
section, we present two SSW-NN applications to illustrate ML
applications on structure prediction and reaction network
exploration.

4.1. Material Simulation for Predicting Phase Diagrams

Multielement oxide represents a class of solid materials with
complex structures. Force field methods were often utilized in
the atomic simulation of oxides, especially when the atomic force
can be approximated by fixed charge ionic interactions, e.g., in
ZrO2. For many other oxides, such as ZnxCryOz, where Cr has
variable oxidation states (e.g., Cr3+ and Cr4+), it has long been a
problem to characterize the atomic structure of oxides with
varying Zn:Cr ratios.With the advent of the SSW-NNmethod, it
is now possible to establish the global PES for these complex
oxide systems, and thus, large-scale ML-based atomic
simulations can be utilized to understand these materials’
physicochemical properties.
ZnCr oxide is one of the first generation of industry catalysts

for syngas-to-methanol conversion,70 being extensively studied
in experiments since the 1930s. While the Zn:Cr ratios can
significantly influence the syngas-to-methanol catalytic activity
and selectivity, the structure of the catalyst has been debated for

Table 1. ML Applications in Literatures, Where the Global
Dataset from Global Optimization Methods or from the
Large Existing Database Are Utilized for Training Potentialsa

system description model DatGen RMSE, meV/atom

Si59 ACSFb NN MD/MC 5

GeTe14 ACSFb NN MD 5.6

CHON22 ANI NN NMS 3

LiSi44 ADF/RDFc NN GA 6.3

B29 ACSFb GPR PSO 53
aThe listed data include the data descriptors, ML models, data
generation schemes, and root mean squared errors (RMSEs) in the
energy. bACSF in the Behler scheme.13 cDescriptor based on the
expansion of the radial and angular distribution functions.60

Table 2. G-NN Potentials Generated by the SSW-NN
Methoda

system NN arch. data set size RMSE, meV/atom

TiOH66 201−50−50−1 143786 9.8

B24 173−110−110−1 165423 12.4

H2O
45 156−50−5−1 58825 2.1

ZnCrO2 324−80−60−60−1 38285 4.3

CoO46 148−80−50−50−1 42246 12.1

AuCeO47 183−60−50−50−1 33654 6.1

CHON3 407−120−80−80−1 94854 10.1

YZrO49 188−60−50−50−1 28803 7.7
aListed data includes the feed-forward NN architecture (nodes and
layers), the global dataset size and the RMSE in energy.
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decades.71−74 By using the SSW-NN method, we recently
established the ternary ZnCrO global data set (see Table 2).2 It
contains structures from 10 to 84 atoms per cell and cover
different Zn:Cr:O ratios, i.e., ZnO, CrOx, and ZnCrxOy, with
different morphology forms, e.g., bulks, layers, and clusters. The
large varieties of Zn:Cr ratios for structures in data sets provide
the basis for predicting different oxidation states for Cr in
different chemical environments.
The extensive SSW global search for different ZnCrO

compositions was then performed by using the ZnCrO G-NN
potential, which leads to the ternary phase diagram for ZnCrO,
as shown in Figure 6. The spinel-type crystalline structures

appear as a major motif for the ZnCrO materials, where the Zn
composition ranges from Zn:Cr ratios of 0:1 to 1:1. The
thermodynamics phase diagram of Zn−Cr−O further reveals
the presence of a small stable composition island, i.e., Zn:Cr:O =
6:6:16−3:8:16, where the oxide tends to crystallize into a spinel
crystal phase (Figure 6b). While ZnCr2O4 is the most stable
phase in thermodynamics, the change of the Zn:Cr ratio from
1:2 to 1:1 (Zn3Cr3O8) leads to the generation of a series of
metastable crystal phases, which contain the unusual [ZnO6]
octahedra (Oh) in bulk. By further investigating the surface
phase diagram, we found that, owing to the presence of
[ZnO6]Oh, the oxygen vacancy (Ov) formation ability increases
appreciably and extends from the surface to subsurface with the

increase of the Zn:Cr ratio. Under syngas reaction conditions,
the catalyst surfaces of Zn3Cr3O8 expose unprecedented four-
coordinated planar Cr2+ cations, while only five-coordinated Cr
cations with a pyramid geometry can be exposed on the catalyst
surfaces of ZnCr2O4. This subtle structural difference turns out
to be critical in how it profoundly affects syngas conversion
activity and selectivity.2

4.2. Reaction Simulation for Finding Reaction Pathways
and Mechanisms

Organic reactions lie at the heart of chemistry. Recent years have
witnessed the encouraging progress of ML techniques in the
reverse design of synthetic routes based on the existing
experimental database of organic synthesis.76−79 These knowl-
edge-based approaches, however, lack the insight into the
mechanisms of chemical reactions and by no means can replace
atomic simulations. To applyML techniques to simulate organic
reactions, there are two outstanding difficulties in building the
global PES of organic reactions. First, the configurational and
reactive space of organic molecules is astronomically huge,
involving many elements (at least C, H, O, or N) and many
different bonds with different bond orders (C−C, CC, C−H,
or C−O···). Second, the transition region of organic reactions is
often narrow in space and has a high energy with respect to the
initial state due to covalent bond making/breaking (e.g., >0.7
eV).
We recently applied the SSW-NN method to resolve the

glucose pyrolysis reaction network.3 As glucose with the
C6H12O6 formula virtually has enumerable likely pathways
involving C−O−H elements in organic chemistry. The
construction of a general-purpose C−H−O G-NN potential is
necessary to describe the large number of possible reaction
pathways. Our SSW-NN simulation for data set generation
focused on collecting basic local reaction patterns by considering
that the global pathways can be seen as combinations of simpler
local patterns. First, we have utilized the short-time SSW
sampling of molecular crystal systems (in variable periodic cells)
containing C−H−O−N elements via DFT calculations. The
starting molecular structures for these simulations are randomly
selected from QM9.32,33 On the basis of this small data set from
DFT sampling, the first NN potential is trained and then utilized
for global sampling of organic molecules and molecular crystals
that are performed iteratively to expand the reactive PES data
set. The starting structures are also randomly selected from the
QM9 database. Finally, the SSW-NN global sampling for the
glucose pyrolysis reaction network is used to further improve the
transferability of the G-NN potential for glucose chemistry. The
starting structures are updated and randomly selected from
glucose global optimization SSW trajectories. The final data set
has 94854 structures, containing nearly all (78) bonding
patterns with C−H−O−N elements (Table 2).
Benefiting from the low cost of the G-NNPES, we can achieve

a deep exploration of the reaction tree starting from D-glucose. In
total, we managed to sample 1200000 minima and collected
more than 150000 reaction pairs. After removing duplicate
reactions and recording only the lowest barrier connection
between pairs, the final reaction database, as shown in Figure 7,
contains 4455 unique molecules and 6407 different reactions
with 3488 reaction patterns. We have carefully analyzed the
pathways in our reaction database to identify the pathways to 5-
hydroxymethylfurfural (HMF), a major and valuable product
observed in experiments.80−82

Figure 6. (a) Ternary Zn−Cr−O phase diagram. The green region
maps out the compositions, with the spinel-type skeleton structure as
the global minimum, and the blue circles labeled by numbers indicate
the composition. Only the spinel ZnCrO phases in the red dashed
triangle are thermodynamically allowed. (b) Convex hulls for all the
ZnCrO structures are indicated by the blue line. The blue triangles and
black circles represent the negative and positive formation energies
compared to the ZnO andCrO2 phases, respectively. f.u. = formula unit.
Reproduced with permission from ref 2. Copyright 2019 Springer
Nature.
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In the lowest energy pathway, β-D-glucopyranose undergoes
ring-opening, isomerization, tautomerization, dehydration, and
cyclization toHMF (see Figure 7). Overall, the rate-determining
step belongs to the enol−keto tautomerization reaction (C →

D), with a barrier of 1.91 eV (with respect to the most stable
configuration of β-D-glucopyranose hereafter), which is 0.19 eV
lower than the previous pathways (2.10 eV in β-H elimination).3

The enol−keto tautomerization reaction overall benefits the
mechanism due to the opening of the retro-Michael-addition
route in the subsequent dehydration reactions and the avoidance
of direct β-H elimination.

5. CONCLUDING REMARKS

Current ML techniques greatly expand the time-scale and the
scope of atomic simulations. This perspective overviews three
key aspects of ML potentials that are critical to the performance,
i.e., the quality of the data set, the ML models, and the structure
descriptors. We show that the major drawbacks of ML
potentials, e.g., the lack of transferability and robustness that
are intrinsic to the numerical function with a huge number of
fitting parameters, can be largely circumvented with the help of
efficient global PES sampling techniques. In the future, we
believe that there is still ample room to improve ML potential
techniques, which could further expedite material and reaction
simulations and produce new research directions. To be specific,
we elaborate two ongoing research directions in our group.

5.1. ML Potentials Integrated with Electronic Structure
Information

All current ML potentials only take into account the geometrical
information on structures and output the total energy of the
system. This is certainly associated with the high cost in
computing electronic structures (e.g., atomic charge) for new
structures based on quantum mechanics. However, considering
that the electronic structure characteristics are intrinsic to many
important applications, the low-cost methods to correlate the
electronic structure with the geometrical structure are certainly
much more desirable and deserve future research efforts.

5.2. Integrated ML Models for Material and Reaction
Prediction

Apart from atomic simulations, ML techniques have been
applied to many other fields in chemical property prediction,
such as reaction mechanisms,76 band gaps,58 structure of
proteins,83,84 and so on. In fact, property prediction is a
coarse-grained predictor compared to atomic simulations but
can provide quick ideas on possible reaction patterns and
desirable catalyst compositions, to name a few. It is therefore
desirable to couple them with atomic simulations, particularly
for global material and reaction searches, to accelerate the
simulation. On the other hand, the atomic simulation can
validate these predicted properties and provide new data for the
construction of such a model.
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