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ABSTRACT: Heterogeneous catalysis, for its industrial impor- / -
tance and great complexity in structure, has long been the testing \mu/y:c

ground of new characterization techniques. Machine learning . ./
(ML) as a starring tool in data science brings new opportunities for  , @/
chemists to interpret, simulate, and predict complex reactions in V
heterogeneous catalysis. Here we review the current status of ML
methods and applications in heterogeneous catalysis by following
two main streams: the top-down approach by learning experiment K
data and the bottom-up approach for making predictions from
first-principles, which differ in the data source. We focus more on
the latter, where ML interacts intimately with first-principles
calculations for predicting the key properties (e.g, molecular adsorption energy) and evaluating potential energy surface (PES) to
expedite the atomic simulation. The ML-based PES exploration represents the top gear that can largely replace the traditional roles
of first-principles calculations for structure determination and activity evaluation but requires efficient methods for data set
generation, sensitive structure descriptors to discriminate structures, and iterative self-learning to refine the ML potential. We
illustrate these key ingredients of ML-based atomic simulation using the SSW-NN method developed by our group as the example.
Three cases of SSW-NN application are presented to elaborate how ML can expedite the material and reaction simulation and lead
to new findings on catalyst structure and reaction channels. The future directions of ML-based applications in heterogeneous
catalysis are also discussed.
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1. CHALLENGES OF THEORETICAL CATALYSIS The Haber—Bosch process, as a textbook example for
illustrating the complexity of heterogeneous catalysis, utilizes
alkali-promoted fused iron as catalyst for converting N,/H, to
ammonia.” It generally contains multiple elements and
multiple components: in addition to iron, the presence of
alumina, calcium oxide, and potassium are also important to
the performance; the catalysts are prepared from magnetite
(Fe;0,) followed by high-temperature reduction. Apart from

Heterogeneous catalysis is where material science meets
chemical reactions. It is no wonder that every progress in
material characterization technique, from the earliest X-ray
diffraction (XRD) to the latest transmission electron
microscopy (TEM), brings great forward in catalysis science.'
Theoretical simulations with density functional theory (DFT)

calculations enter into the tool boxes of catalysis community in the complexity of catalysts, the reaction occurs at high
the past 30 years and have become an essential complement to temperature (500 °C) and high pressure (300 atm) with
experiment for understanding catalyst structures and catalytic many intermediates, including adsorbed H and NH, species.
activity. Not only are the reaction mechanisms clarified for a The past decades have seen many DFT-based calculations on
significant number of heterogeneous catalytic reactions,” but Fe-catalyzed ammonia synthesis,”® which were however
also general rules for predicting catalytic sites and reactivity are limited to single-crystal Fe surfaces (e.g., Fe(111),”
established.® To date, much fundamental knowledge from well-

defined, crystalline surfaces have been gleaned and the research Received: August 9, 2020

focus shifts more toward catalytic systems under realistic Revised: ~ September 11, 2020

conditions. In this regard, DFT-based theoretical simulation
faces the ever-increasing challenges to cope with the rapidly
increased degree-of-freedoms caused by both the high
structure complexity and the huge reaction space in catalysis.

© XXXX American Chemical Society https://dx.doi.org/10.1021/acscatal.0c03472
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Figure 1. Schemes for BEP relation and Sabatier volcano plot (a) and machine learning for heterogeneous catalysis (b).

Fe(211)®) as what did in surface science experiment.’
Obviously, it would be highly desirable for theoretical
simulations to predict the active catalyst structures under
reaction conditions and to explore the intriguing questions
relevant to catalysis, such as the roles of promoters and the
effect of particle size.

In fact, the dilemma of catalytic reaction simulation is rooted
in the fundamental kinetics laws governed by the Master
Equation (eq 1).

P

dt (1)

where the rate of P (a vector represents the population of
different states) depends on the transition rate matrix A.
According to transition state theory (TST),'”"" the matrix
element Aj in transition rate matrix is the rate constant
between i and j states, as summarized in eq 2.

kT _pge
kTST — B e AGTS/ICBT

)

It suggests that (i) the building of the matrix needs to run
over all (important) states, the number of which explodes with
the increase of system size and complexity; (ii) the occurrence
of states separated by high barriers are exponentially slower
compared to those with low barriers. For a reaction to occur at
500 °C with 1 s™! rate, the free-energy barrier is about 2 eV,
which suggests that if the temperature drops to 400 °C, the
rate is reduced to 0.01 s™'. This answers the basic questions in
catalysis (e.g, why ammonia synthesis requires high temper-
atures: the stepwise hydrogenations from N to NH; have an
overall barrier of 1.8~2 eV).'*"3

In general, both the catalyst structure evolution under
reaction conditions and the catalytic reactions of molecule
belong to rare events with high reaction barriers, which require
a long time-scale (from seconds to hours) in simulation in
order to observe these processes. As ab initio (e.g, DFT)
molecular dynamics (MD)'* relies on Born—Oppenheimer
approximation to solve Schrodinger equations and Newtonian
laws to move atoms, the typical time-scale is often limited to
less than a nanosecond, i.e. 10° times ab initio calculations with
a typical time-step of 1 fs in MD. On the other hand, the
computation speed of DFT, although is sensitive to the
complexity of the employed density functional (e.g, PBE,"”

13214

HSE06'¢), has a poor scaling of at least O(NIn N) and is
efficient only for small-sized systems within hundreds of atoms.
Therefore, instead of straightforward MD, alternative low-cost
approaches have to be taken in order to predict catalytic
reactions from theory.

Since the late 1990s, the mainstream to study catalytic
reactions converges to locate the transition state (TS) of
reactions on potential energy surface (PES), from which the
reaction barrier and the activity can be determined from
theory.'” Many efficient TS search methods have been
developed for heterogeneous catalytic reactions. They can be
classified as the single-ended approach, i.e. starting from TS-
liked structure (the dimer method and its improved
versions'*~*’), and double-ended approach, i.e. starting from
initial and final states (nudged elastic band”"** and double-
ended surface walking™’). As the TS search requires the
information on the structure configurations, it becomes
frustrated for reactions with complex reaction configurations
such as those involved in surface structure restructuring and
unusual reaction intermediates in reaction network.

Another popular way for activity prediction is based on the
Bell-Evans—Polanyi (BEP) principle,”* which avoids the time-
consuming TS search by establishing the approximate linear
correlation between the reaction barrier E, and the reaction
enthalpy AH (the energy difference between final and initial
state), see eq 3.

E,=aAH + b (3)
Between 2001 to 2003, several groups (e.g., Neurock, Hu, and
Norskov groups, etc.)”**~>" determined independently the
parameters of a and b in BEP relation by DFT for a large
number of surface reactions, which provides the quantitative
basis for plotting the Volcano curve of activity, the Sabatier
principle known since 1910s, as shown schematically in Figure
la. The binding strengths of products and reactants need to be
in a fine balance, neither too strong nor too weak, to achieve
the highest activity.

The BEP approach has been further extended to predict the
activity of complex multistep reactions by using simple
descriptors that can be computed facilely. For example, the
d-band center (g,) proposed by Hammer and Nerskov’® was
known to be a good indicator for the molecular adsorption

https://dx.doi.org/10.1021/acscatal.0c03472
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strength on metal surfaces, which can be computed by
averaging the occupied d-states (n,) in eq 4.

/_ifo n,(e)ede
B /—Zo nd(é‘)dé‘ (4)

Except for the electronic descriptors, the geometry-based
descriptors are of most interests. The generalized coordination
number (CN) proposed by Sautet group”” connects the
atomic coordination environment (eq S) with the binding
energies of reaction intermediates for oxygen reduction
reaction.

CE\T:iL(j)

j=1 "max ()

&

The sum includes all of the first-nearest neighbor atoms (cn(j))
and the division by the maximum number of first-nearest
neighbors in the bulk (cn,,,,) ensures that CN spans the range
between 0 and 12 in face-centered cubic metals. Based on
these simple descriptors, the high-throughput screening
techniques were then developed for fast evaluating the activity
of different materials across the periodic table.’">*

After obtaining the elementary reaction data from first-
principles (e.g., the reaction energy and barrier), the mean-field
microkinetics or kinetic Monte Carlo (KMC) can be utilized
to simulate chemical reactions on surfaces, which will yield the
time-resolved catalytic activity and selectivity and provide the
fine details on the surface status during reaction dynamics.
Although the first-principles data-based KMC simulations
remain largely limited to few well-defined crystalline surfaces
and relatively simple reactions, the success of these works by
carefully benchmarking with experimental kinetics data do
represent a marvelous hallmark in theoretical catalysis.’***
Apart from the difficulty in considering the structural
complexity of the catalysts and the tedious computation of
the kinetics data for all elementary steps, a major concern for
kinetics simulations originates from the intrinsic error of DFT
calculations (~0.1 eV error) in computing adsorption energies,
reaction barriers, and vibrational entropies for certain
molecules/reactions (e.g, CO adsorption). These DFT errors
have to be corrected empirically in kinetics simulations in
order to yield a more realistic rate for the experimental
conditions.

With the development of method and the massive
production of data, the 21st century has witnessed a great
advance in data-driven science (e.g, machine learning (ML))
and its applications in catalysis research. Similar to the high-
throughput approaches that use geometry descriptors for
finding trends, ML methods also utilize the geometry-based
information for the energy and the property prediction, which
renders the high speed in computation. ML applications on
energy materials,>® catalysis informatics,>® and heterogeneous
catalyst design and discovery’”*® have been reviewed recently.
Different from these previous contributions, here we will focus
more on the progress of theoretical catalysis via atomic
simulation, which is now benefited significantly by ML
techniques. We will review ML-based atomic simulation
methods utilized in catalysis, in particular stochastic surface
walking (SSW) global optimization based on neural network
(NN) potential method (SSW-NN) developed in our
group.””*” These ML methods announce the advent of a
post-DFT era in theoretical catalysis, which aim to solve

challenging catalysis problems that are traditionally intractable
from first-principles calculations, either in the time-scale or in
the size and the structural complexity of the system.

2. ML FOR HETEROGENEOUS CATALYSIS

As an interdisciplinary technology, ML was invented in the
fields of computer science and statistics science,”' which aims
to identify trends, rules, or functions from the existing data,
instead of from physical laws. With dozens of ML algorithms
developed to date, from kernel ridge regression to support
vector regression and to sophisticated deep NN, ML
techniques have been successfully applied to many fields of
science that routinely have access to big data.

The applications in heterogeneous catalysis started in
1990s,*** mainly on learning experimental data. For example,
Kito et al.** used NN to predict the product distribution of
ethylbenzene oxidative hydrogenation based on experimental
catalyst data. They chose different products, including styrene,
benzaldehyde, benzene, toluene, CO, and CO, as the outputs
of NN, and nine different independent variables as input,
including the valence, surface area of the catalyst, amount of
catalyst, typical valence, ionic radius, coordination number,
electronegativity, partial charge of oxygen ion, and standard
heat of formation of oxides. The high cost in obtaining a large,
consistent data set is the major bottleneck for ML applications
in experiment. Compared with experiment, the data produced
from DFT calculations is self-consistent and much more
economic to obtain. This is particularly advantageous for
materials and reactions that are unlikely to synthesize or to
occur under ambient conditions. Furthermore, many material
gene databases with DFT results are being established around
the world,*® which, as a speed-up, enables the convenient data
mining for ML of novel materials.

Broadly speaking, there are two branches for ML
applications in catalysis (ie., the top-down and bottom-up
approaches). The former is to directly predict catalytic
performance based on existing experimental data as those
started from 1990s. The latter learns the results from quantum
mechanics (QM) calculations, aiming to predict property and
evaluate PES, which can be regarded as a replacement of QM
for complex catalysis applications, as shown in Figure 1b.

2.1. Top-Down Approach: Learning from Experimen-
tal Data. To build a ML model for catalytic performance
prediction, it is essential to first define the data descriptors for
catalyst. Traditional concepts for catalyst include, for example,
the particle size, surface area, valence state, surface
composition and coordination, which can be determined
from advanced characterization techniques, such as XRD,
TEM, Brunauer—Emmett—Teller surface area analysis, X-ray
photoelectron spectroscopy, and so on. However, because of
the high cost of structure characterization, it is a common
practice that only the catalysts with good catalytic performance
are characterized in detail, causing the lack of data for most
catalysts reported in literatures. In practice, the low-cost
descriptors are adopted in ML applications, typically from the
catalyst synthesis conditions (e.g., feed composition and ratio,
synthesis time and temperature, pH value, etc.) and the
operation conditions of reaction (e.g., catalyst amount,
reaction temperature, time, reactant amount, etc.).

For instance, Sasaki et al.*> showed that the yield and
byproducts of NO decomposition over the Cu/ZSM-S zeolite
catalyst can be predicted by a NN model using the
experimental conditions as input such as compositional

https://dx.doi.org/10.1021/acscatal.0c03472
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quantity, temperature, and pressure. Similarly, Rahman et al.*®

used the temperature, reaction time, substrate molar ratio, and
enzyme amount as the inputs for a NN model, which can
predict the yield of lipase-catalyzed dioctyladipate synthesis.
These models help to optimize the synthesis conditions and
reaction conditions to maximize the reaction activity. However,
they are not expected to be transferable (i.e., only work for the
experimental data for each research group) because the
consistency of data cannot be guaranteed due to some hidden
variables (e.g., stirring rate, experimental equipment).
ML-assisted literature analysis (i.e., the data mining
technology) is a possible solution to overcome the data
limitation and eliminate the inconsistency between data. By
using the text mining and information extraction of natural
language processing, Kim et al.*” established a ML model using
natural language processing and decision tree to predict the
critical parameters for synthesizing oxide materials from 12 000
scientific articles about metal oxide synthesis (Figure 2). For
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Figure 2. Two-dimensional hexagonally binned normalized histo-
grams of hydrothermal reaction and calcination times and temper-
atures for binary and pentanary oxides. Figure adapted from ref 47.
Copyright 2017 American Chemical Society.

instance, they found that most hydrothermal reactions are
carried out between 150 and 200 °C for 12 or 24 h. The
hydrothermal condition used to synthesize both simple and
complex oxides occur at the similar and only modestly high
temperatures but often with fairly long times, and the
calcination temperature is typically material-specific and driven
by the structural change. Yildirim and co-workers* collected
5508 experimental data for steam reforming of CH, from
literatures. The database was then analyzed using decision trees
to extract correlations and trends, where 21 variables related to
catalyst preparation and operational conditions were used as
input variables. Similar applications have also been reported in
other reactions (e.g,, CO oxidation, CO, reduction, etc.).”*™>'

It should be emphasized that the conclusions from the top-
down ML approaches rely on the scope of published
experimental data: it is virtually impossible to predict the
performance of unknown catalysts and find unknown reactions.
The emergence of ML robots’ might be the solution for
collecting a large amount of experimental data without human
input. There is much to explore in the future of automated
experiments.

2.2. Bottom-Up Approach: Predicting from First-
Principles. It is more attractive to make prediction from
first-principles, i.e. without input from experiment. Such a
standard ML procedure would consist of four steps: (i)
building a data set from QM calculations, often DFT, which
should contain various structures and their properties (e.g,

energy, band gap, d-band center, etc.); (ii) identifying the

features that can link the structure with the properties for
prediction. These features can be basic constant of atom/
elements, the geometrical coordinate or other low-cost
computable properties (e.g., atomic charge); (iii) designing
ML models and training ML models on the data set; (iv)
predicting properties using ML models for unknown
structures.

Typically, step (i) is the most time-consuming step, which
requires heavy QM computation on many candidate structures.
We will show later that the efficient PES sampling techniques
are critical for obtaining a desirable data set. The steps of (ii)
and (iii) are application-orientated where the chemical
intuition, the experience, and also trial-and-error tests are
typical recipes to identify the suitable features and to construct
appropriate ML models. In the following, we will overview the
ML literatures on heterogeneous catalysis from two aspects
according to the output of ML models (i.e., adsorption energy
prediction and PES prediction).

2.2.1. Adsorption Energy Prediction. Based on the BEP
principle, i.e. the linear dependence of the reaction barrier on
the adsorption energy, the adsorption energy is regarded as a
key parameter in heterogeneous catalysis and is also a low-cost
computable property. The successful prediction of adsorption
energy can lead to a quick evaluation of catalytic activity of
system. The numerical accuracy for the adsorption energy
prediction should be high (e.g, below 0.1 eV) because the
value itself is typically —3 to 1 eV and an error of 0.1 eV may
totally change the activity.

For finding the active site of CO reduction on NiGa alloy,
Ulissi et al.** developed a NN-aided discovery approach which
relates the CO adsorption energies with different NiGa
bimetallic surface sites. The surface site is described by seven
structural descriptors, i.e. the coordination number (CN) of
Ni, CNg,, the average CN for Ni—Ni bonds (CNy;_y;), the
average CNy;_g, the average CNg, y; the average CNg, g,
and the fraction of the Ni in the alloy. This led to the discovery
of a previously unconsidered active site, single Ni atoms
surrounded by surface Ga atoms, which is shown to exhibit a
step-like kinetic behavior and the best thermodynamics for CO
reduction.”* Jinnouchi and Asahi’>® predicted the rates of
NO decomposition as a function of composition and particle
size by using a ML scheme, where the combination of Bayesian
linear regression and the local similarity kernel is utilized to
connect the structure with the O, N, and NO adsorption
energies. The catalytic activities of NO decomposition on
Rh,_,Au, alloy nanoparticles were then estimated by Sabatier
analysis based on the predicted adsorption energy and the
available BEP relationship.

Apart from the catalytic activity estimation on a single
catalyst, the ML-based adsorption energy prediction can be
extended for the purpose of the high-throughput catalyst
screening and the reaction network optimization. For catalyst
screening, Tran and Ulissi®’ constructed the relationship
between structural fingerprints and the CO and H adsorption
energies. Guided by the optimal adsorption energy of CO and
H (Eco = —0.67 eV and E;; = —0.27 eV) for CO,RR and
hydrogen evolution reaction (HER), respectively, they
performed a systematic screening of alloys with 31 different
elements that encompasses 50% of d-block elements and 33%
of p-block elements. Finally, 131 candidate surfaces from 54
bulk alloys for CO, reduction and 258 surfaces from 102 bulk
alloys for H, evolution were identified. This method
successfully accelerated the design of the CuAl alloy catalyst

https://dx.doi.org/10.1021/acscatal.0c03472
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Nature Publishing Group.

which provides multiple sites and surface orientations with
near-optimal CO binding for both efficient and selective CO,
reduction.”®**° For finding reaction mechanism, Nerskov and
co-workers® proposed a reaction network optimization
framework using Gaussian process regression (GPR) to
study the reaction of syngas (CO + H,) over Rh (111)
catalysts under experimentally relevant operating conditions
(573 K and 1 atm of gas phase reactants), as shown in Figure
3. Starting from a few DFT energies of the intermediates in the
reaction network, a computationally inexpensive GPR scheme
was used to predict the free energy for all intermediates in the
reaction network. The BEP relation was exploited to estimate
the activation energies for all reactions in the network, and a
simple classifier was used to select the potential rate-limiting
steps (Figure 3a). Through an iterative GPR model refinement
process, where only potential rate-limiting steps were analyzed
via further DFT calculations, a probable reaction network from
syngas to acetaldehyde was finally identified (Figure 3b).
Instead of the quantiative prediction of adsorption energy,
ML using the same data set of adsorption can be utilized to
provide qualitative understandin% on what controls the
adsorption strength. Toyao et al.®" developed a simple ML
model with 12 descriptors for predicting the adsorption
energies of CH,, and H species on Cu-based alloys. Among 12
descriptors, the element group, surface energy, and melting

point were found to be the key factors affecting the adsorption
energy (Figure 4a). Rappe and co-workers constructed a
regularized random forest ML model to quantify the
importance of different descriptors of the Ni,P (0001) surface
structure on determining the free energy of H adsorption. The
results showed that the Ni—Ni bond length is the most
important descriptor for HER activity: a shorter Ni—Ni bonds
give higher HER activity (Figure 4b).°” Similarly, Xin et al.®>**
built a ML model with a large number of different descriptors
for predicting CO binding on alloys. They identified the
important role from the d-band shape and sp-band filling on
CO binding, even for coinage metals. Indeed, this information
provides the alternative to the adsorption energy for activity
prediction.

Since the adsorption energy can be related to d-band center
for metals, ML is also utilized to predict directly the d-band
center as to provide a more general model for different
adsorbates. Takigawa et al.***® developed a ML-based model
by gradient boosting regression method to predict the d-band
centers for 11 metals (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt,
Au) and their pairwise bimetals for two different structures
(metal impurities and overlayer-covered metal surfaces). It is
shown that the d-band centers are reasonably well predicted
with average root-mean-square error (RMSE) less than 0.5 eV,
even only six descriptors and 25% data given for training. In

https://dx.doi.org/10.1021/acscatal.0c03472
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the same idea, Sun et al.”’ attempted to identify the better
spinel oxide catalysts for oxygen evolution reaction (OER).
They first observed that the activity on spinel oxides is related
to the covalency competition between tetrahedral and
octahedral sites. This competition led to an asymmetric M-
O-M backbone where the weaker covalent M-O bond in
lattice facilitates the exposure of the cation site and therefore
enhances the OER activity. The covalency strength can be
quantified by the energy difference between the centers of the
metal d and oxygen p bands, denoted D). On the basis of a set
of structure features of spinel, a ML model was thus
constructed to predict the Dy; with a mean absolute error of
0.05 eV. They thus predicted the [Mn][Al,sMn, ;]5O, spinel
catalyst to have an optimal Dy, and the subsequent
experimental results confirmed its superior activity.

Overall, the activity prediction using the adsorption energy
and the alternatives is an approximated approach built on the
BEP relation. Considering the exponential dependence of the
reaction rate on reaction barriers, the other crucial factors, such
as the catalyst stability, the active site structure, and the exact
reaction kinetics, cannot be totally neglected, which indeed

become increasingly important for evaluating the peak activity
of volcano curve. The atomic simulation remains as the key
tool to go beyond BEP relation in order to determine the
activity under realistic conditions.

2.2.2. Atomic Simulation for Fast PES Exploration. QM
and statistic mechanics are two branches of fundamental
sciences that play on the battle ground of PES. The former
provides the energy and latter derives thermodynamics from
the energy landscape. It is of central significance to develop fast
and reliable PES evaluation methods to meet the ever-
increasing demand for simulating complex systems, such as
those in heterogeneous catalysis. ML-based atomic simulation
emerged in recent years is such a promising field, which relies
on a ML potential for evaluating PES, an analytic numerical
function with numerous adjustable parameters. Compared with
empirical force fields, the ML potential is advantageous in
studying complex material systems as well as chemical
reactions as long as the training data set contains the related
PES data.

The energy expression to correlate structure with energy is
basic to the ML model for PES evaluation. Since energy is an
extensive quantity, the analytic expression of energy can be
conventionally expanded as the summation of different
functional forms constituted by local geometrical variables,
such as bond, angles, and dihedral angles. The many-body
expansion (MBE) method is a typical approach, which, being
identical to the force field methods, splits the total energy as
the interaction terms of one-, two-, and three-body terms (E,
Ey, and Ey, i, j, k are indices of atom), respectively, as shown in
eq 6.

E= Zi E + Zi Zj>i E; + Zi Zj>i Zk>; Byt (6)

Instead of using physically meaningful functions, each term
utilizes complex numerical functions, the parameters of which
can be trained via ML techniques. For example, Bartok et al.
used Bayesian inference techniques to correct DFT one-body
and two-body energies for water, which significantly improves
the description of the structure and dynamics of liquid water.*®
Because of the sharp increase of the many-body terms (four-
body and above) with the increase of system size, the MBE
method is problematic for describing large size systems and
also those with salient many-body bonding characteristics
(metallic systems) and thus not suitable for heterogeneous
catalysis.

Behler and Parrinello®~"> proposed a high-dimensional
neural network (HDNN) scheme in 2007, as shown in Figure
S, that splits the total energy as the summation of individual
atomic energy, as shown in eq 7.

E=Y.E )

where E; for each atom is the output of a standard feed-forward
NN. The input of NN is a set of structural descriptors to
describe the atom bonding environment. The NN parameters
can be trained using the first-principles PES data set.
Compared with the MBE method, the atomic energy
summation method is linear scaling with respect to system
size and thus is suitable for simulating large material systems.
In HDNN architecture, the functional form of NN can be
replaced by other numerical representations, especially when
target systems are relatively simple. For example, GPR
proposed by Bartok et al.””***? have been successfully utilized

13218 https://dx.doi.org/10.1021/acscatal.0c03472
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for a number crystalline systems, functional materials, and
amorphous solids.”*~"*

To describe the local atomic environment, Behler proposed
a series of Gaussian-type symmetry functions as the input of
NN. The most used two-body G* and three-body G* are shown
in eqs 8—10," where r; is the internuclear distance between
atoms i and j and 6y is the angle centered at the i atom with
neighbors j and k. These structural descriptors are invariant
with respect to the permutational, rotational, and translational
movement of the system and thus can produce a continuous
PES for deriving the first energy derivatives (i.e., the atomic
force):

3
rl“
0.5 X tanh [1 - —}], forr, <,
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fc (rij) =
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With the similar idea, other local geometry representations
(e.g., bispectrum and smooth overlap of atomic positions)””
were also proposed for PES construction.

While HDNN was initially developed for material systems, it
has been utilized for catalysis-related problems. Bose and
Kitchin’® investigated the oxygen interaction with Pd (111) by

constructing a PAO HDNN potential. The grand-canonical
MC simulations on a (10 X 10) Pd slabs at 600 K was
performed, which found that the mean oxygen coverage is
around 0.50 monolayer. The oxygen diffusion barrier from
HDNN potential is 0.40 eV, which are in agreement with
experimental results of 0.4~0.5 eV.”” Artrith et al.’”® utilized
HDNN potential for optimizing the structure of Cu/ZnO. The
canonical (NVT) MD simulation at 1000 K was carried out for
a large Cu cluster (612 atoms) supported on ZnO (1010)
surface, a system of 7524 atoms. The yielded Cu cluster is
highly distorted, particularly at the interface, which provides a
structural model for understanding the true catalyst morphol-
ogy under reaction conditions.

Undoubtedly, a major problem for ML-based atomic
simulation lies at the high cost of producing the large PES
data set required for training ML potential, which must involve
extensive QM calculations for a large number of structural
configurations. Ideally, the PES data set for ML should be
representative and compact but needs to be as global as
possible to cover both minima and transition regions on PES.
In 2017, our group proposed to utilize the SSW’*** global
optimization trajectories for constructing the representative
PES data set, and the combination with NN technique (SSW-
NN) for atomic simulation turns out to be successful for
simulating a wide range of materials and reactions and also for
guiding experiment.”"*> The SSW-NN method is now
implemented in LASP software (Large-scale Atomic Simu-
lation with neural network Potential, accessible from www.
lasphub.com), which incorporates the PES data generation,
NN potential training, and the atomic simulation in one
platform. By using LASP, a large set of global NN (G-NN)
potentials is now established via the automated global-to-global
learning procedure. The G-NN potentials cover a wide range
of elements across the periodic table. In the following sections,
we will introduce the SSW-NN method and its three
applications to heterogeneous catalysis.

3. SSW-NN FOR HETEROGENEOUS CATALYSIS

3.1. SSW-NN Methodology. In principle, the global PES
sampling methods would be an outstanding choice for PES
data generation. Simulated annealing has been the most
popular method, which explores PES via repeated heating and
cooling cycles.”” The enhanced MD method such as
metadynamics®”*® can be the valuable supplement to add
the reaction data. Nevertheless, MD sampling for data
generation still suffers from the “short-sighted” problem
because of the exponentially low probability to overcome
high reaction barrier at low temperatures and the preference of
trapping at high-entropy structure regions at high temper-
atures. As a result, the PES data thus generated are often
overwhelmingly redundant, being highly localized to a few
initial phases. This will inevitably lead to the inadequacy of
thus-obtained ML potentials for predicting unknown materials
and reactions. However, the other global optimization
methods, such as basin-hopping,** evolutionary algorithm,”’
genetic algorithm,***” and the particle swarm optimization
method (CALYPSO),” have also been tested for on-the-fly
ML model training of materials in recent years. These methods
transform the PES by overlooking the transition region
between minima to realize fast global minimum (GM) search.
Generally, they sample the PES data from the structural
relaxation trajectories and thus may well miss key reaction
channels.

https://dx.doi.org/10.1021/acscatal.0c03472
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Our group developed SSW method in 2013 for global
optimization of aperiodic systems,”’ such as molecules and
clusters, and the method has been extended to periodic
crystals.”’ Compared with other unbiased global optimization
methods, SSW algorithm” can explore unbiasedly both
minima and saddle points on PES due to the small step-size
utilized in structure displacement. In SSW, an automated
climbing mechanism is implemented to manipulate a structural
configuration moving smoothly from a local minimum to a
high-energy configuration along one random mode direction.

The climbing mechanism of SSW method learns from the
TS location method, the bias-potential driven constrained-
Broyden-dimer (BP-CBD) method,”® that utilize bias
potentials to overcome the barrier between minima. In one
particular SSW step, a modified PES, as shown in Figure 6a, is

a | Energy ;N

Coordinate
Self-Learning Procedure
5 DFT Dataset
& %
&L 2
$ %
)
SSW-NN > _
G-NN Potential Structure Data

Figure 6. (a) Ilustration of the SSW global optimization on 1-D PES.
(b) Self-learning procedure of SSW-NN method for obtaining G-NN
potential.

utilized for moving from the current minimum, R, to a high
energy configuration, R’ (the climbing), in which a series of
bias Gaussian potential is added one by one consecutively
along the direction. Once the Rf is reached, all bias potential
are removed and the local optimization is performed to quench
the structure to a new minimum. Different from the BP-CBD
method, each SSW step (from one minimum to another) will
choose a random direction to perturb the structure after the
direction is refined (softened) using the biased-CBD method.
At the end of the SSW step, a structure selection module (e.g.,
in Metropolis Monte Carlo scheme) is applied to accept/refuse
the new minimum.

Inherited from SSW global optimization, the SSW-NN
method is an iterative global-to-global approach for generating
G-NN potential and performing the global optimization
(Figure 6b). The G-NN potential follows the HDNN
framework, as introduced in Figure S, but the input layer
utilizes a more sophisticated power-type structure descriptors

(PTSD),*" which is developed to be compatible with the SSW
global optimization data set. In PTSD, not only are the
traditional two-body and three-body terms included but also
the four-body terms are added and the spherical functions are
introduced to enhance the structure discrimination. For
example, eqs 11—13 show the two-body terms utilized in
PTSD, where R" is the power function to describe the radial
distribution and the Y;,, is the spherical function to take into
account the angular distribution of the chemical environment.

Rn(’i;‘) = T,;lfc ("ij) (11)
Sil = Z Rn(rij)
ji (12)
5 /2
L
Si2 = Z Z Rn("ij)YLm("ij)
m=—L | j#i (13)

In the beginning of SSW-NN self-learning procedure (Figure
6b), the NN potential is initially obtained by learning a small
data set (typically less than 1000 structures) collected from
short-time SSW sampling based on DFT, which are often
restricted to small systems (below 20 atoms) of known
configurations. The data set needs to be calculated by DFT
with a high-accuracy setup. Next, the SSW global optimization
based on NN potential will be carried out extensively, starting
from a variety of initial structures, mainly randomly
constructed, with different morphology, including bulk, surface
and clusters, different chemical compositions, and different
number of atoms per cell. After each iteration of global
optimization, a small data set with diverse structures on PES is
screened out by selecting either randomly or from those
exhibiting new atomic environment (e.g., out-of-bounds in
structural descriptors, unrealistic energy/force/ curvature).
These additional data will be calculated by DFT with the
same high-accuracy setup and then added to the training data
set for a new iteration of NN potential update. Typically, more
than ~100 iterations are required to finally obtain a
transferable G-NN potential. The accuracy for G-NN potential
is typically 5~10 meV/atom for RMSE of energy and 0.1~0.2
eV/A for RMSE of force.

3.2. LASP Software. LASP™ software project initiated in
the early of 2018. The initial objective is to merge two major
simulation tools, SSW global optimization and G-NN
calculations, developed by our group into a single package
for the better and simpler usage. LASP is now shaped toward a
software platform for many purposes, not only for atomistic
simulation but also for PES data building and exchange and
even for G-NN potential generation. A large set of powerful
simulation techniques has been assembled into LASP program
(the current version 2.2) to simplify the usage and to enlarge
the scope of the current atomistic simulation. This can be seen
in Figure 7, which overviews the current modules in LASP.
Apart from the G-NN computation for energy and force
evaluation, LASP implements standard data-exchange inter-
faces to connect with common PES evaluation packages, which
allows for the PES data generation using QM calculation. For
PES exploration at the finite temperature and pressure
conditions, LASP also provides the standard and restrained
MD functionalities, in addition to the structure local/global
geometry optimization and TS search. All these functionalities
can be switched on and off in LASP with short keywords, and

https://dx.doi.org/10.1021/acscatal.0c03472
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Figure 7. Architecture of LASP code and the modules implemented.

thus a variety of different tasks can be fulfilled facilely within
one platform, such as SSW-NN PES global exploration, PES
data generation using QM calculations, G-NN potential
creation, and MD simulation based on G-NN potential.

3.3. SSW-NN Applications. 3.3.1. Case 1: Y-Stabilized
ZrO, Structural Evolution. Y-stabilized ZrO, (YSZ) is one of
the most important ion conducting solids for solid oxide fuel
cells and solid oxide electrolysis cells.””™”* The composition
and temperature-dependence of the oxygen anion trans-
portation have been the focus in a large volume of
literatures.””~”” The composition and temperature-depend-
ence of the oxygen anion transportation have been the focus in
a large volume of literatures. The observations from experi-
ments are, however, at odds with the computational results
from empirical potentials, where the computed oxygen
diffusion coeflicient, reaches the maximum generally below
the maximum observed in experiment (i.e, 8 mol % Y,0,
(8YSZ) below 1700 K). To resolve this puzzle, we recently
established the ternary Y—Zr—O G-NN potential based on the
SSW global PES data set that covers a wide range of Y,Zr,0O,
compositions with different structural types (e.g., bulks,
surfaces, clusters), including Zr, ZrO,, Y,0; and Y,,Zr;_,,0,_,
mixed oxides with Y/Zr ~ 1:9 to ~4:3. The final training data
set consists of 28 803 structures. The G-NN has a five-layer
network (188-60-50-50-1) for each element, reaching to
71 103 fitting parameters in total. For the final G-NN potential,
the RMSE for the energy and the force reaches 7.674 meV/
atom and 0.165 €V/A, respectively.”>”’

SSW-NN global search was then utilized to clarify the
thermodynamics hull diagram for bulk Y,,Zr,_,,O,_,, as shown
in Figure 8a, where the relative formation energy of
Y,.Zr,_,,0,_, is plotted against Y,0;% = Y,0;/
(Y,03+Zr0,).”° 1t shows that 8YSZ, the composition to
have the highest ion conductivity in experiment, is in fact not
the thermodynamically stable phase, which prefers to
disproportion to the neighboring compositions, 6.7YSZ and
20YSZ. This explains the long-term instability of 8SYZ as
observed in experiment. By further performing long-time MD
simulation, we have computed the anion diffusion coefficient
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Figure 8. (a) Thermodynamic convex hull diagram for Y,,Zr, ,.0,_,
with respect to the cubic-ZrO, and cubic-Y,0;. (b) Oxygen diffusion
coefficient D vs the concentration of Y,0; at different temperatures.
Figure adapted from refs 98 (a) and 99 (b). Copyright 2020 American
Institute of Physics and Copyright 2020 American Chemical Society.

for different YSZ samples at up to 8 different temperatures
with a long time-scale up to 10 ns. The calculated diffusion
coeflicient D is plotted against the concentration of Y in Figure
8b from 1200 to 1800 K.”” The G-NN simulation shows that
the D of oxygen anion peaks correctly at 8YSZ for a wide
temperature range below 1600 K, reproducing the key finding
in experiments.”” With the increase of temperature to 2000 K,
the maximum of D curve shifts from 8 mol % to the higher
dopant concentrations, also in agreement with experimental
findings.

3.3.2. Case 2: Syngas Conversion on ZnCrO Catalysts.
Zinc—chromium oxide (ZnCrO) catalyst is the first generation
industry catalysts for syngas-to-methanol. Experiments show
that the catalytic activity is significantly affected by Zn:Cr
ratios:'%°~'%* the best activity and selectivity is achieved at
Zn:Cr = ~1:1, while the Zn:Cr = 1:2 catalysts yield rather poor
activity.'"®* The atomic structure of ZnCrO catalgfsts with the
Zn:Cr = 1:1 remains however uncertain.'”*~'% To resolve
where and how syngas conversion occurs on ZnCrO catalyst,
SSW-NN simulations were performed to obtain the Zn,Cr,0
global PES based on the ZnCrO G-NN potential, which was
obtained by exploring different compositions of Zn—Cr—O
three element systems.'”” The final G-NN has three-hidden
layers (324-80-60-60-1 net), equivalent to 103,743 network
parameters in total. The final RMSE of energy and force are 4.3
meV/atom and 0.128 eV/ A respectively.

By using the GMs of different ZnCrO compositions, the
thermodynamics phase diagram of Zn—Cr—O is thus
constructed, as shown in Figure 9a. It reveals a small stable

https://dx.doi.org/10.1021/acscatal.0c03472
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composition island (i.e., Zn:Cr:O = 6:6:16~3:8:16), where the
oxide alloy crystallizes into a spinel phase. At Zn:Cr = 1:1, a
Zn;Cr;Og metastable crystal phase is present, also with the
spinel crystal structure, but contains the highest concentration
of unusual [ZnOg] octahedra (Oy) in bulk compared to the
other spinel crystals. This subtle structural difference turns out
to be critical to affect the syngas conversion activity and
selectivity profoundly.

The ZnCrO G-NN potential was utilized for bulk and
surface structure determination under reaction conditions and,
due to the lack of C and H elements, it cannot be applied to
describe the syngas reaction. The efforts to build five-element
G-NN potential for catalytic reactions are considerably huge
and thus DFT calculations were applied to investigate the
syngas conversion reaction on the most stable Zn;Cr;Og and
ZnCr,0, surfaces determined from G-NN. It was found that
the Zn;Cr;O0y surface can generate the four-coordinated planar
Cr** cation site on surface that is critical for methanol activity
and selectivity. As shown in Figure 9b, the reaction follows CO
— CHO — CH,0 — CH;0 — CH;O0H/CH, mechanism,
where the rate-determining step is the hydrogenation of CH;0
step, which also determines the selectivity of CH;OH or CH,.
The microkinetics simulation further confirms the sharp
difference in activity and selectivity observed in experi-
ment, 104108

3.3.3. Case 3: Origin of Amorphous TiO,H, for HER. Black
titania (TiO,) exhibit a core—shell structure with the
amorphous shell coated on the anatase crystals has been
found to exhibit the superior HER activity.'””™"'* The
amorphous shell structure which is responsible for the
enhanced HER activity is unclear. To resolve the HER active
sites on the amorphous TiOH, shell, a Ti—O—H three
elements NN potential was constructed to describe the PES of
TiO,H, system based on large TiO,H, global data set with
143 786 structures.''> The network involves two-hidden layers,
each with 50 neurons, equivalent to 38103 network
parameters in total. The final RMSE of energy and force are
9.8 meV/atom and 0.22 eV/ A respectively. This TiOH NN
potential can replace theoretically the DFT calculations not
only in structural identification of TiO,H, catalyst but also in
catalysis reaction involving water, O,, H,, and H,O,.

By performing SSW-NN simulation, the thermodynamics
phase diagram of TiO, bulk and surface in contact with H, at

13222

different temperature and pressures can thus be determined
quantitatively. Among common anatase surfaces, only the
ridged anatase (112) surface was found to reconstruct
significantly by surface H atom and a local high H coverage,
0.69 ML, can gradually built up during the surface
amorphization with the exposure of 25% Ti,, 50% Tis, and
25% Tig. atoms on surface (Figure 10a). The Ti—O bond
length has a wide distribution, from 1.8 to 2.2 A, as compared
with 1.9~2.1 A on perfect TiO, surface. This high H coverage
not only renders the black color of the amorphous TiO, but
also provides a low energy reaction channel for HER: a
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Figure 10. (a) The structure of amorphous TiO, surface with H
coverage of 0.69 ML from SSW-NN global search. Ti: gray balls; O:
red balls. H: white balls (H in reaction: green ball). (b) The energetic
profiles of H coupling via the OH/OH coupling and the TiH/OH
coupling mechanisms on the pristine (112) surface and amorphous
TiO,-0.69H. Figure adapted from ref 115. Copyright 2018 American
Chemical Society.
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transient Ti—H hydride becomes likely to form on the exposed
Ti atoms of amorphous surface. The nascent TiH hydride can
react facilely with the neighboring OH to produce H,, where
the barrier is more than 1 eV lower than the traditional H
coupling channel via two surface OH groups (barrier >1.9 eV),
as shown in Figure 10b."">"''® The TiH/OH coupling pathway
for hydrogen production is ~24 orders of magnitude faster
than the direct OH/OH coupling, indicating that the TiH/OH
mechanism is the only likely reaction for the HER on
amorphous TiO, material. The experiment also revealed the
presence of TiH hydride on amorphous TiO,, where the
characteristic H chemical shift § value in 'H nuclear magnetic
resonance spectroscopy has a negative peak (—0.6 ppm) and
this ?1e7ak of & grows with the increase of hydrogenation
time.

4. CONCLUDING REMARKS

The ever-increasing ease to access big data has reshaped our
society and also the way of chemical research. In the past
decade, a variety of ML techniques have been developed, either
based on experimental data or using first-principles results,
which demonstrate their great power to solve outstanding
challenges in heterogeneous catalysis that are otherwise
difficult to treat with traditional methods. While here we
retrospect briefly the history of theoretical studies on surface
reactions and introduce the main branches in ML methods and
applications for catalysis, our main focus is put on the ML-
based atomic simulation, which has the great potential to
replace DFT for large-scale atomic simulation. As a
representative in this field, SSW-NN method implemented in
LASP software is elaborated, highlighting the key features of
algorithm and the main functionalities. Three cases studies of
SSW-NN (i.e., YZrO, ZnCrO, and TiOH systems) for material
and reaction simulation are presented to demonstrate the
ability of ML for large-scale simulation and the finding of new
structures and new reactions.

Apart from the successful applications, the current ML
methods do exhibit many obvious shortcomings that need to
improve in the future. For example, the limited availability and
possible inconsistency are generally present for experimental
data, which is a key obstacle for ML to guide experiments; the
intrinsic approximation in BEP relation casts doubts on ML-
based catalyst and activity prediction using simple descriptors
(e.g, the adsorption energy). ML-based atomic simulation
using G-NN potentials, although has reached to the stage for
wide applications, still suffers from a number of scientific and
technical difficulties, as listed in the following.

(i) The high-cost to build multielement G-NN potentials
for materials and reactions. For example, for CuZnAl
catalyst for methanol synthesis, it would require a six-
element potential, CuZnAICHO, to explore the phase
space of catalyst structures and reactions. The
construction of such a G-NN potential is, however,
extremely challenging due to the cost to generate the
representative PES data;

(ii) The lack of electronic structure information in the
current ML potentials. The electronic structure
information, such as atomic charge and density of states,
if available with a low-cost, would facilitate greatly to
interpret different electronic spectra in experiment data
and to understand better how catalysts evolve during
reaction;

(ili) The questionable accuracy for simulating long-range
disordering of complex systems, such as glassy materials.
There are general concerns on both the data set
generation using small unit cells and the use of local
atomic descriptors for fitting the energy of long-range
disordered structures and the interaction therein.

(iv) the difficulty to go beyond DFT accuracy. For the great
difficulty in generating global data set, DFT calculation
remains to be the practical choice for constructing ML
potentials. This effectively restricts the accuracy of ML
potentials to the level of DFT.

(v) Overall, there are still ample rooms to design new ML
models and invent new ML methods to better cope with
the above issues. Luckily, heterogeneous catalysis is
complex enough to drive the development of these new
technologies for exciting future.
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