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Abstract
Zeolite is a class of microporous crystalline materials widely used in heterogeneous catalysis. Over the past decades, theoreti-
cal simulations, particularly those based on first principles calculations, have advanced significantly the understandings on 
zeolite, from structure to adsorption kinetics and to catalytic reactivity. The machine learning (ML) methods developed in 
recent years further boost the ability of theory for unraveling the interplay between the synthetic conditions and the zeolite 
structure and functionality. This short review overviews the theoretical insights into the role of zeolite framework in zeolite 
stability and catalysis revealed from atomic simulation in recent years. We will mainly focus on two key aspects: (i) the theory 
on zeolite stability, including the templating effect of structure directing agents and the zeolite bonding pattern analysis; (ii) 
the confinement effect of zeolite pores that affects the catalytic conversion of molecules in zeolite. The future directions of 
theoretical simulation are also discussed.
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1 Introduction

Zeolite is an important class of inorganic crystalline materi-
als built exclusively by the corner-sharing  TO4 tetrahedra (T 
denotes tetrahedrally coordinated Si, Al, or P, etc.). It has 
been widely used in many fields of chemistry, particularly 
important as the catalysts in the fields of petroleum chemis-
try and fine chemical industry. According to the simple pack-
ing rule of  TO4 tetrahedra, a rich variety of zeolite structures 
are likely, i.e. millions of hypothetical zeolite structures from 
recent predictions [1–3], but only 252 distinct zeolite struc-
tures (IZC-SC database) [4] have been successfully synthe-
sized in the past century. Synthetic efforts have been more 
focused on zeolites with unconventional structural features, 
such as extra-large pores, low framework density, extremely 
complex framework topology and intrinsically chiral frame-
works, etc.

In tradition, zeolite synthesis follows the hydrothermal 
method, where a large parameter space of synthetic condi-
tions helps to control the complex crystallization kinetics 
and yield the metastable porous crystal. The hydrothermal 
crystallization from the alkaline solution mixture contain-
ing silicon, aluminum and alkali metals only leads to alu-
minosilicate zeolite with low Si:Al ratio (e.g. < 5), where 
the strong alkali  (OH−) acts as the key mineralizer to dis-
solve Si and Al ions [5–7]. The replacement of inorganic 
alkalis by tetramethylammonium as the structure directing 
agents (SDAs) found by Barrer et al. [8] breaks the Si:Al 
ratio limitation to obtain even pure  SiO2 zeolites (e.g. ZSM-
5) [9]. The pure  SiO2 zeolites can also be produced using 
the recently-reported solvent-free synthetic route [10, 11]. 
The aluminophosphate zeolite (AlPO) that enters into the 
zeolite family in 1980s [12] utilizes boehmite, phosphoric 
acid and organic amine as reagents. To date, the synthesis of 
novel zeolite is still largely governed by domain heuristics 
acquired through experience and is thus rather labor inten-
sive during the testing of various synthetic conditions, such 
as the feed Si:Al:P ratios, pH values and SDAs, the crystal-
lization temperature and time [13–16]. It would be desirable 
to speed up the discovery of new zeolites by predicting the 
synthetic conditions and route from theory.
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Zeolites possess a range of interesting properties, for 
example the good thermal/hydrothermal stability at high 
temperatures, the confinement of micropores, and the 
unique solid acidic/basic sites. They have been utilized not 
only for catalyzing directly the catalytic conversion but 
also as the microporous reactor to load the metal clusters. 
The 1962 witnessed the landmark achievement in zeolite 
catalysis, where the synthetic faujasites (zeolites X and Y) 
was first introduced in the fluid catalytic cracking (FCC) 
of heavy petroleum distillates that increase significantly 
the yield of gasoline [17]. To date, zeolite catalysts have 
conquered many important processes in petroleum refining 
and chemical conversion, including hydrocracking, light 
gasoline isomerization, methanol-to-hydrocarbons (MTH) 
and methanol-to-olefins (MTO) technologies, etc. [18–20]. 
These industrial applications, in turn, asked for the deep 
knowledge on zeolite structure and activity, where the state-
of-the-art experimental and theoretical tools were applied to 
provide the atomic-level information through the years [21].

Theoretical simulations, particularly in the framework 
of density functional theory (DFT) calculations, reshape 
largely the material simulation and catalysis community in 
the past 30 years. It has become an essential complement to 
experiment for understanding catalyst structures and reac-
tion activity [22, 23], and has been used to model and predict 
various properties of zeolites, from structure to reactivity. 
On the other hand, DFT simulations are generally frustrated 
in modeling large systems (> 100 atoms) at the long-time 
scale (> 10 ns), which leads to their limited predictive power 
for many key properties, particularly those relating to zeolite 
synthesis (e.g. nucleation, growth and dissolution). For mol-
ecules interaction with zeolite, the accuracy of DFT calcula-
tions also raised severe concerns for the poor description of 
van der Waals (vdw) interaction in DFT. To overcome the 
deficiencies of DFT calculations, new theoretical methods 
have been developed in recent years. As a representative, 
the machine learning (ML) techniques [24–26] has been 
adopted successfully in studying zeolite. The ML models 
have demonstrated their great values in finding the corre-
lation between complex synthesis conditions and the zeo-
lite type [27–29]. This circumvents the difficulty of atomic 
simulations in directly simulating the zeolite synthesis. The 
ML methods have also been utilized to predict mechanical 
properties [30] and explore the optimum SDAs [31].

An important breakthrough in atomic simulations is the 
advent of global ML potentials for describing the global 
potential energy surface (PES) of zeolite. The ML potential 
simulation can reach the accuracy of DFT calculations but 
with the speed of several orders of magnitude faster and 
thus can be utilized for long-time simulation of large sys-
tems. In 2018 our group developed the first global neural 
network (NN) potential simulation package, LASP soft-
ware (Large-scale atomic simulation with neural network 

Potential, accessible from http:// www. lasph ub. com) [32], 
which integrates the PES data generation from DFT, the NN 
potential training and the atomic simulation in one platform. 
By using LASP, a large set of NN potentials, including the 
five-element Si–Al–P–O–H NN potential [33] for zeolite, 
are established via the automated global-to-global learning 
procedure, which can fast and accurately evaluate the PES 
and facilitate to address the thermodynamics and kinetics 
problems of complex materials.

Admittedly, the chemistry of zeolite is now an extensive 
topic with numerous literatures. This review will mainly 
focus on the role of zeolite framework in sustaining the zeo-
lite high stability and facilitating catalysis as revealed from 
recent atomic simulation. We would like to refer the readers 
to many excellent reviews in the zeolite field, for example 
zeolite synthesis [34–36], catalytic reactions [17, 37, 38], 
simulation method advances [39, 40] and the discussions 
about key properties of zeolite (e.g. acidity and cation sites 
etc.) [41–47]. This review is organized as follows. Section 2 
overviews the recent advances in understanding the forma-
tion of zeolite framework, including the templating effect of 
SDAs and the zeolite stability analysis. The interaction of 
zeolite framework with confined molecules, as encountered 
in catalysis, is discussed in Sect. 3, which includes three 
parts, i.e. the current status on the calculation accuracy, the 
free energy calculation at high temperatures, and the con-
finement effect of zeolite framework.

2  Theoretical Advances in Understanding 
Zeolite Stability

The zeolite formation is generally believed to consist of 
two stages: the aggregation of small silicate and alumi-
nate to form alumino-silicate polymers, and the assembly 
of alumino-silicate polymers to create the zeolite skel-
eton that could be mediated by SDAs, as schematically 
shown in Fig. 1. The silicate/aluminate condensation and 
nucleation starts from the reaction between Si(OH)4 and 
Si(OH)3O− monomers, where the anion attacks the neu-
tral species to form an intermediate structure containing 
a fivefold coordinated Si center. The reaction barrier and 
the reaction energy vary from 0.36 to 1.27 eV and − 0.49 
to 0.81 eV, respectively, which is strongly affected by the 
solvent environments as calculated by previous DFT calcu-
lations [48–51]. Upon water removal, a negatively charged 
dimer is formed, followed by the continuous polymeriza-
tion. The Al–Si dimer condenses either with the Al(OH)4Na 
monomers to form the Al–Si–Al trimer or with another 
Al–Si dimer to form the Al–Si–Al–Si tetramer [52]. After 
that, the alumino–silicate polymers are then wrapped out-
side SDAs for the further polymerization to zeolite skeleton. 

http://www.lasphub.com
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The atomic simulation at this stage becomes difficult due to 
the large system involved and the long time scale in order to 
form the zeolite 3D framework. Below in Sect. 2.1 we will 
first overview the current opinions for the role of SDAs, 
which are regarded as the core component to determine the 
type of zeolite skeleton. The other factors to affect the zeolite 
stability are discussed in Sect. 2.2.

2.1  Templating Effect of SDAs

The presence of SDAs is of central importance for the zeo-
lite synthesis. In particular, the types of the high-silica and 
aluminophosphate zeolites are very sensitive to the choice of 
SDAs [14]. The trial-and-error with different SDAs is often 
one of the most efficient ways for synthesizing novel zeolite 
structures in experiment. To date, various types of SDAs 
have been developed, including both alkaline metal ions and 
organic SDAs (e.g. N-contained SDAs, P-containing SDAs, 
imidazolium derivatives, and metal complexes).

The previous DFT calculations have shown that the 
most effective SDAs observed in experiment generally has 
the highest binding energy with the target zeolite skeleton 
[47]. Both hydrogen bonding (H-bond) and ionic interac-
tions affect the binding strength between SDAs and zeolite. 
Theoretical methods are therefore developed to screen out 
the optimal SDAs with the highest binding energy with zeo-
lite skeleton. For example, Lewis et al. [53] developed the 
Zebeddee code to search for SDA numerically to best fit 
into the target zeolite skeleton that works as the template. 
The procedure starts by seeding an initial molecule to which 

functional groups from a fragment library are added selec-
tively; a range of operations are then followed, including 
bond rotation and translation, to fulfill energy minimization. 
The optimal SDA is finally generated by comparing the over-
all stability between different candidates. Similar numerical 
approaches have also been developed, e.g. as implemented 
in ZEOMICS [54] and Zeo +  + [55] codes. While, Deem 
et al. [31] developed a ML approach to predict the binding 
energy of SDA. They pointed out that there are 469 SDAs 
with verified stabilization energies below − 17 kJ  mol−1  Si−1, 
comparable to or even better than widely used SDAs for zeo-
lite Beta. It indicates that only calculating the binding energy 
between SDAs and zeolite framework does not necessarily 
lead to the optimal SDAs.

Due to the lack of the global PES information, these enu-
meration approaches, however, cannot guarantee the target 
zeolite with the optimal SDA being indeed the most stable 
structure, i.e. the global minimum, and thus may lead to the 
wrong prediction of the experimental product. By using NN 
based global PES exploration, Ma et al. [33] constructed a 
global AlPO PES including from two-dimensional layered 
structures to caged and three-dimensional densely-packed 
structures, as illustrated in Fig. 2a. They introduced an exter-
nal rigid body to mimic the short-range repulsive interaction 
between SDAs and zeolite skeleton (Fig. 2b). From that, 
they demonstrated that the zeolites with the specific skel-
eton could be the thermodynamically stable products in the 
presence of suitable SDAs. The increase of rigid body size 
(rs) rapidly decreases the framework density value (Fig. 2c). 
Too large or too small rs fail to identify zeolite, leading to 
either the two-dimensional layered or the three-dimensional 
densely-packed structures. The zeolite only turns out to be 
the global minimum under the suitable rs being applied, 
i.e. in between 3.5 and 5.5 Å. The four known zeolites, i.e. 
ATV-, ATO-, ATS- and CHA-type, do emerge as the global 
minimum at rs = 3.5, 4, 4.5 and 5–5.5 Å, respectively. The 
choice of SDAs with the suitable size is indeed the key to 
condense  TO4 towards the desirable zeolite structure, instead 
of other stable phases.

With the advent of NN potential calculations, it is con-
ceivable that the design of SDAs can be greatly benefited 
in the future, not only in evaluating the binding energy but 
also in quantifying the global minimum. The major obstacle 
is still the development of multi-element NN potentials to 
mimic zeolite synthesis, which need to include at least the 
five elements Si–Al–P–O–H of zeolite framework and the 
additional elements in SDAs such as C–N–P elements.

2.2  Thermodynamic Stability of Zeolite

Owing to the metastable nature of zeolite (as compared to 
densely-packed quartz  SiO2), it has taken a long effort to 
reveal the origin for the high thermal stability of zeolite 

Fig. 1  Sketch Map of zeolite formation process
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framework. The fundamental understandings achieved have 
facilitated to answer important questions in zeolite design, 
for example, whether a particular hypothetical zeolite struc-
ture can be synthesized in reality. In history, scientists first 
analyzed and learned the underlying distinguishable features 
shared by all existing zeolites, and made attempts to extend 
these understandings to hypothetical zeolites.

The energy criterion is often utilized as the essential 
index in evaluating the relative stability. Bushuev et al. pro-
posed two empirical criteria to assess thermodynamic fea-
sibility: the upper energetic limit of ~ 0.17 eV per  SiO2 for-
mula units (f.u.) and the ratio of energy and volume (∆E/V) 
less than 0.5 kJ  cm−3 (∆E and V is the relative energy to 
quartz phase and zeolite volume, respectively) [56]. By 
exploring AlPO global PES, Ma et al. provided a physically-
meaningful explanation of upper energy limit (Fig. 2a) [33]. 
If a caged structure is less stable than the two-dimensional 
layered structure, the presence of SDAs would explode the 
cage structure, resulting in the formation of two-dimensional 
layered structure. Therefore, the energy of two-dimensional 
layered structure determined the upper energy boundary. In 
their works, a 0.18 eV per  AlPO4 f.u. above quartz phase is 
identified as the upper energy boundary (red line in Fig. 2a), 
being consistent with the value suggested by Bushuev et al. 
[56]

Besides the energy criterion, the structural criterions 
are proposed to analyze the feasibility of zeolite. A lin-
ear relationship between the energy and the framework 
density value was discovered for conventional silicate 
zeolites [57–59]. However, with the emergence of many 
high-energy zeolites, especially unconventional zeolites 
containing T elements other than Al, Si, and P, the linear 
energy criterion is no longer reliable [56]. Many zeolites 
that are energetically not favored as silicates have been 
successfully realized as germanates [35]. Gramlich-Meier 
and Meier found that the T-O distances, O-T-O angles, 
T-O-T angles, and O-T-O-T-O twisting angles in feasible 
zeolite frameworks should vary within very narrow ranges 
[60]. Thorpe et al. [61] found that many existing zeolite 
frameworks showed a ‘flexibility window’ over a range 
of densities, but soon afterwards they found that several 
existing zeolites violates this rule.

In 2013, Yu et al. discovered that the local interatomic 
distances (LIDs) in all existing zeolite frameworks strictly 
obey a set of rules, which could be used to discriminate 
feasible zeolite structures from infeasible hypothetical struc-
tures [62]. Three types of LIDs were calculated, including 
 DTO (T-O distance),  DOO (O-T-O distance), and  DTT (T-O-T 
distance). They found that the average LIDs (designated 
〈DTO〉, 〈DOO〉, and 〈DTT〉, respectively) were linearly well 

Fig. 2  Global PES exploration based on G-NN potential. a Global 
PES contour plot of  Al6P6O24 minima. The x axis is the framework 
density (FD), the y axis is the total energy of minima with respect to 
global minimum (quartz phase). b Key low energy crystalline struc-

tures. Yellow sphere indicates zeolite void. c The variation of the 
global minimum structures identified from global search in the pres-
ence of rigid body at different rigid body size (rs) value. Reprinted 
with permission from Ref. [33]



Topics in Catalysis 

1 3

correlated for all of the 200 existing zeolite frameworks 
(Fig. 3a and b). They then applied these LID criteria to eval-
uate the feasibility of 665 hypothetical zeolite frameworks 
derived from three different databases, and found that only 
197 hypothetical zeolites are possibly synthesizable.

Beyond zeolite topology parameters, it has been observed 
that the zeolite stability also depends on the compositions 
and pH environments during the zeolite synthesis. Ma et al. 
constructed the thermodynamic ternary phase diagrams 
based on Gibbs formation free energy (Gf) with CHA-type 
 SiO2, AlPO and  SiAlO4H as the vertexes, where H as the 
counter ions represent the neutral and acid pH environments 
(Fig. 3c) [33]. The minima appear nearby two vertexes, 
 Al0.5P0.5O2 and  SiO2, but the maximum appears at the left-
bottom corner  (Si0.5Al0.5O2H0.5). It proves the importance 
of Si:Al:P composition to the zeolite stability, causing the 
non-freely tunable Si:Al:P ratio in experiments. Moreover, 
a linear relationship is obtained by approximating Gf as the 
function of the proportions of  TO4 (monomer,  PT) and their 
linkages (T-O-T’,  PTT’) based on their binding patterns, see 
Fig. 3d and Eq. 1. As Gf is positive in nature, it is no wonder 

that most terms, including monomers  PT terms,  PSiP,  PAlAL 
and  PSiAl terms have the positive energy contributions. But 
it is important to reveal that  PSiSi and  PAlP terms yield the 
negative contributions, suggesting they are the major driv-
ing forces to stabilize zeolite. The empirical rule in zeolite 
chemistry, namely, no Si–O–P and Al–O–Al patterns, is 
clearly manifested by their large positive prefactors, 0.35 
and 0.16. In addition, the positive prefactor for  PSiAl term 
explains the difficulty to incorporate Si element in AlPO 
and the special Si:Al:P ratio of  nSi <  nP in SAPO synthesized 
under neutral pH conditions.

Moreover, the zeolite stability is also controlled by Al 
distributions, where the Al substitution energy is used as 
a thermodynamic energy criterion to evaluate the Al dis-
tributions. Muraoka et al. [63] found that the zeolite sta-
bility depends on the substituting contents of Al based on 

(1)

Gf ≈
(

0.18 ∗ PSi + 0.20 ∗ PAl + 0.15 ∗ PP

)

+ (0.35 ∗ PSiP + 0.16 ∗ PAlAl + 0.13 ∗ PSiAl

− 0.06 ∗ PSiSi − 0.05 ∗ PAlP)

Fig. 3  a, b Linear relationships of a 〈DOO〉 versus 〈DTO〉 and b 〈DTO〉 
versus 〈DTT〉 in existing zeolites. Reprinted with permission from 
Ref. [62]. c Gibbs formation free energy (Gf) contour plot in ternary 
phase diagram for varied  SixAlyPzO2Hy−z composition. Si:Al:P ratio 

is indicated for each composition. d Correlation between Gf and the 
linear fitting of Gf (Eq. 1) for all data in (c). Reprinted with permis-
sion from Ref. [33]
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Sanders−Leslie−Catlow interatomic potential calculation. 
The relation between the relative framework energies versus 
the Al contents varies in accordance with the topologies, 
suggesting that the relative stability of zeolites depends not 
only on the topologies, but also on the substituting contents 
of Al. The locations of Al in zeolites have a certain prefer-
ence that zeolite with Al at a particular T site is energeti-
cally more stable than those with random distributions. The 
zeolite with Al atoms at particular lattice T sites is energeti-
cally more stable than that with random distributions. Simi-
lar phenomena have also been observed by others [64–66].

Compared to the zeolite stability analysis based on atomic 
simulation, the direct connection between synthesis condi-
tions and target zeolite is also an insightful approach to 
reveal the origin of the zeolite stability. Jensen et al. [28] cre-
ate natural language processing techniques and text markup 
parsing tools to automatically extract synthesis information 
and trends from 70,000 zeolite journal articles. They created 
a regression model for a zeolite’s framework density from 
the synthesis conditions. This model has a cross-validated 
root mean squared error of 0.98 T/1000 Å3, and many of 
the model decision boundaries correspond to known syn-
thesis heuristics in germanium-containing zeolites. Muraoka 
et al. [29] trained ML XGBoost models to predict the zeolite 
skeleton based on parameters of the synthetic conditions 
from various literatures, as shown in Fig. 4. The experi-
mental samples were first divided based on the Na/(Si + Al) 
ratio: zeolite structures obtained with high Na/(Si + Al) 
ratios included  FAU,  LTA, and  SOD, and those such 
as MFI, MOR, and LTL obtained with lower Na/(Si + Al) 
ratios. The next boundary for the high Na/(Si + Al) groups 
was defined at the Si/(Si + Al) ratio of 0.5 (or Si/Al ratio = 1.) 
The three major phases observed in the branches with Si/
Al > 1.0 were FAU, GIS, and ANA, which were separated 

clearly by the synthesis temperature. FAU was the most 
dominant phase at the lowest temperature, while ANA is 
dominated at the highest temperature. From that, they built 
a similarity network and uncovered the overlooked simi-
larities between zeolites that were already manifested in the 
synthesis conditions.

Although the zeolite stability is controlled by not only 
thermodynamics but also kinetics, the latest atomic simu-
lation evidences from global optimization emphasizes the 
importance of thermodynamics to the framework topologies 
and cation compositions, which are influenced by the syn-
thetic conditions. Nevertheless, more theoretical efforts are 
desirable to probe the global energy landscape of different 
zeolites and identify the transformation pathway between 
zeolite. This additional kinetics information should further 
help to reveal the origin for the selectivity in forming dif-
ferent zeolite.

3  Atomic Simulations on the Zeolite–
Molecule Interaction

Heterogeneous catalysis in zeolite involves the molecular 
diffusion, adsorption and reaction, which are influenced by 
many factors, including the zeolite framework type, acidic 
site, surrounding molecules and the temperature. The mole-
cule–zeolite interactions are of the fundamental importance, 
which is however often very weak, being H-binding or vdw 
interaction. There has been a general concern on the accu-
racy of quantum chemistry (QM) methods in describing the 
zeolite catalysis [67–69]. In addition, most catalytic reac-
tions on zeolite occur at high temperature (> 573 K), which 
will contribute a large entropy term to catalytic reactions, 
and thus free energy calculations are required to understand 

Fig. 4  Decision tree constructed from the trained XGBoost model. The percentages represent the fractions that the dominant phases appear in 
the deeper branches in the complete tree. Reprinted with permission from Ref. [29]
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zeolite catalysis [70–72]. In this section, we first present 
the recent theoretical progress in improving the calcula-
tion accuracy and performing the free energy calculation, 
and with these knowledge on theoretical methods, we then 
review the current understandings on the confinement effect 
of zeolite.

3.1  Calculation Accuracy

It has been noticed that different theoretical methods can 
yield quite different adsorption energy of molecule in zeo-
lite. For example, the adsorption energy of ethane in acid 
chabazite zeolite is vastly different from − 8 to − 56 kJ  mol−1 
according to different calculation methods [73]. Compared 
to the experimental data, the typical DFT calculations (e.g. 
Perdew–Burke–Ernzerhof functional, PBE) greatly under-
estimate the adsorption energy by 20–30 kJ  mol−1. This can 
be largely reduced with the post-DFT methods, although 
they generally are very demanding in computation. The 
random phase approximation (RPA) method underestimates 
the adsorption energy by only ~ 8 kJ  mol−1, whereas the and 
MP2 method leads to an overestimation by ~ 6 kJ  mol−1 [73].

As a low-cost approach, the vdw correction is wel-
comed and widely used to improve the description of DFT 
for long-range interaction. Goltl et al. found that the DFT-
vdw method can achieve the high calculation accuracy for 
ethane adsorption with the average errors of ~ 5 kJ  mol−1 
relative to experimental results [73]. While the DFT-vdw 
methods have now been popularly used in computing zeolite 
catalysis, there are rooms to improve the DFT-vdw accu-
racy, in particular, for evaluating the reaction barrier. Ples-
sow and Studt compared the energy differences of reaction 
intermediates, including TS and minima between PBE-D3 
and Møller–Plesset perturbation theory (MP2) methods. 
The reaction barriers with PBE-D3 were underestimated 
by ~ 30 kJ  mol−1 relative to MP2 results and in some cases 
the deviations can be even more significant (∼50 kJ  mol−1), 
e.g. the formation of  CH3OCH2OCH3 [68]. Interestingly, 
they also pointed out that although the PBE-D3 functional 
is prone to large errors in barrier, the predicted trends from 
one catalyst to another are good. They studied 65 reaction 
energies and 130 reaction barriers related to zeolite catalysis. 
The results showed that the total error for barriers between 
DFT and exact values is larger than 49 kJ  mol−1, but relative 
error between different catalyst is rather small (5 kJ  mol−1), 
as shown in Fig. 5. This validates the use of DFT-vdw calcu-
lations for fast screening and design of new catalytic materi-
als [67].

More accurately, Sauer groups proposed a hybrid method 
combining the high-level QM method with the low-level 
DFT approach (MP2:(PBE + D2) + ΔCCSD(T)) to pre-
dict enthalpy barriers of periodic systems in the chemical 
accuracy (± 4 kJ  mol−1) [74–77]. Owing to the expensive 

calculation cost, these high precision methods are seldom 
utilized to treat complex catalytic reactions, which either 
requires to locate many reaction transition state (TS) or 
needs to invoke the high-temperature molecular dynamics 
(MD).

In recent years ML-based atomic simulation emerges as 
a promising tool, which can be trained to possess a high 
accuracy and in the meantime to achieve the high speed in 
evaluating energy [32, 78, 79]. The “high accuracy” of ML 
potential relies largely on the calculation accuracy of dataset 
calculated by various QM methods. Ma et al. constructed the 
SiAlPOH NN potential to explore the zeolite formation pro-
cess with the calculation accuracy to PBE functional level 
[33]. The same framework should be applicable to construct 
more expensive post-DFT dataset. Recently, Bučko et al. [80, 
81] presented an ab-initio approach that effectively couples 
perturbation theory and ML to make ab-initio free energy 
calculations more affordable. They implemented ML-based 
MD simulation to study the carbonylation reaction of meth-
oxy groups in zeolite mordenite and the calculation accuracy 
reaches to the level of the hybrid HSE06 functional. From 
these latest works, the ML potential shows the promise to 
decrease dramatically the calculation cost and is well suited 
for complex catalysis problems.

3.2  Free Energy Calculations at High Temperature

A convinient way for computing the free energy is to evalu-
ate the vibrational spectrum of the adsorbed molecules 
within the harmonic approximation. The approach, how-
ever, neglects the anharmonic vibrational contribution and 
also does not take into account the configuration entropy 
contribution. Wang et al. [82] investigated two different 
hydrocarbon pool mechanisms, i.e. aromatic-based and 
olefin-based cycles in H-SAPO-34 and H-SSZ-13, by using 
BEEF-vdw calculations. The Gibbs free energies were then 
calculated by correcting the DFT total energy with zero-
point energy (ZPE) and entropy terms using the frequency 
calculation. They found the increase of the temperature from 

Fig. 5  The sketch map of energy differences between DFT and exact 
results. Reprinted with permission from Ref. [67]
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0 to 673 K leads the increase of the apparent energy barrier 
of 20–50 kJ  mol−1.

The anharmonicity contribution to entropy can, however, 
be quite important, e.g. up to 15 kJ  mol−1 [83–85]. Piccini 
et al. [86] calculated the reaction of methanol with ethene, 
propene, and trans-2-butene catalyzed by an acidic zeo-
lite (H-MFI). The calculated enthalpy barriers at 623 K is 
slightly higher than the experiment results with the average 
errors of ~ 8 kJ  mol−1 based on the hybrid QM:DFT meth-
ods. After introducing the anharmonic contributions, the 
average errors can be further reduced to 4 kJ  mol−1, which 
is now within the limit of chemical accuracy.

In order to take into account the configurational entropy, 
the long time MD simulation is required to collect the 
likely configurations at the target temperature. The enhaced 
MD is often utilized to increase the sampling at the high-
energy states, such as the transition states. Bailleul et al. 
[87] investigated the methylation reaction of ethene with 
methanol over the Brønsted acidic ZSM-5 catalyst by using 
DFT-based MD simulation with the enhanced sampling 
methods at 673 K. The reaction kinetics obtained via vari-
ous enhanced MD techniques agrees well with the intrinsic 
reaction rate constant in experiment. Bučko et al. combined 
the MD simulation with transition path sampling and free-
energy integrations to obtain the free energy profiles of zeo-
lite-related catalysis [88–90]. They found that the adsorption 
energy is considerably reduced at elevated temperature due 
to the weak specific interaction of the saturated molecule 
with Brønsted acid sites and that only a fraction of molecules 
within the zeolite can be sufficiently close to the acid site to 
allow the formation of the protonation precursor.

The QM-based MD calculations are computationally 
demanding, which requires to collect millions of PES points 
in MD trajectory. This is because different configurations are 
seperated with barriers and only long time MD simulation 
can help to obtain the converged results. The ML potential 
atomic simulation is the promising direction to speed up the 
free energy calculations [80].

3.3  The Confinement Effect of Zeolite

With the above knowledge on the theoretical progress, we 
now turn to the confinement effect of zeolite, which has been 
proposed to be one of the key merits of zeolite catalysis 
since 1960s [47, 91]. Recent years have seen the atomic sim-
ulation to verify the confinement effect from two aspects: the 
size matching between molecule and zeolite pore, and the 
local molecular accumulation in zeolite channels.

It was long suspected that the size matching between 
catalytic reactions and zeolite skeleton is the key to the suc-
cess of zeolite catalysis, as explained in MTO with SAPO-
34 zeolite, catalytic cracking with Y-type zeolite [17, 82]. 
The effect is however intricate and difficult to understood 

from simple morphology parameters, such as the pore size. 
Ghysels et al. investigated the diffusion of ethene through a 
series of 8-ring zeolites based on force field MD simulations 
[92]. The diffusion behaviors are quire different in different 
zeolite. For example, the diffusion coefficient in AlPO-18 is 
10.2 ×  10–10  m2/s, much larger than that in SAPO-18 zeolite 
(1.9 ×  10–10  m2/s). The ring-dependent diffusion behavior 
cannot be described solely in terms of the composition and 
topology of the rings. Similar results have also been reported 
by others that small differences in ring size could lead to the 
big difference in molecular diffusion [93–95].

In addition to the molecule–zeolite interaction, the cage 
structure of zeolite can act as the trapping region to con-
tain multiple molecules in one cage. This can significantly 
decrease the distance between molecules and the interac-
tions between molecules could greatly affect the catalytic 
performance. For the molecular diffusion, Cnudde et al. [96] 
determined how molecular factors influence the diffusion 
of light olefins through the 8-ring windows of H-SAPO-34 
based on MD simulation. They proved that the diffusion 
through the 8-ring is in general a hindered process, and thus 
the loading of multiple propene molecules in the cage can 
substantially facilitate the diffusion process. As shown in 
Fig. 6, in the case of two propene molecules in cage B the 
forward diffusion barrier is hardly affected (less than 4 kJ 
 mol−1). However, the backward diffusion barrier, i.e., from 
a cage with three propene molecules to an empty cage, sub-
stantially decreases due to the lower stability and reduced 
configurational freedom in cages with a higher propene 
loading. The diffusion barrier is lowered by nearly 20 kJ 
 mol−1 in comparison to the reference case in the absence 
of additional propene molecules. For the highest loading, 
two additional propene molecules in both cage A and cage 
B, the diffusion barrier is also significantly lower (ca. 15 kJ 
 mol−1). This effect is also applied to bond making/break-
ing reactions. Nastase et al. [97] provided the mechanistic 
insight into the framework methylation within H-ZSM-5 at 

Fig. 6  Free energy profiles for propene diffusion through eight-mem-
bered ring of H-SAPO-34 at 600 K with different propene loadings in 
the cages from ab-initio MD simulation. Reprinted with permission 
from Ref. [96]
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the high methanol loadings by varying the acid site densities. 
The MD simulation shows the formation of stable methanol 
clusters in the zeolite pores that can significantly decrease 
the methylation free-energy barriers from 142 kJ  mol−1 with 
3 MeOH to 112 kJ  mol−1 with 5 MeOH.

Although the recent findings provide useful atomic level 
pictures for the confinement effect of zeolite, the quantita-
tive rules to correlate the type of zeolite framework with 
catalytic reactions are still not established. It would be 
desirable to explore the confinement effect for different 
molecules in different zeolites via high-throughput atomic 
simulations. The future of theory should aim to predict the 
catalysis with a given reactants and to design the optimal 
zeolite framework for the reaction.

4  Perspective

Zeolite demonstrates its unique advantages in more and 
more modern catalytic applications. We here highlight 
recent theoretical advances of zeolite stability and cataly-
sis based on first-principle and machine learning technolo-
gies. We have presented the current understandings of zeo-
lite structure from thermodynamics to kinetics, and also 
discussed the major challenges in the atomic simulation. 
The recent ML applications in zeolite were also briefly 
overviewed, which covers both the atomic simulation 
based on the ML potential and the experiment-based ML 
to identify the best synthetic conditions for particular zeo-
lite framework. These ML methods hold promise to solve 
the great complexity in zeolite structure and catalysis.

The next move of theoretical simulations on zeolite is 
clear, which should be along the line to further improve the 
accuracy of PES description and the sampling efficiency of 
PES. Because of the importance of weak intermolecular 
interaction in zeolite catalysis, it is highly desirable to 
reduce the cost of high-level post-DFT methods, in par-
ticular, in treating periodic systems as zeolite crystal. The 
free energy computation as required to properly address 
the high temperature and confinement catalysis needs to 
be equipped as a routine tool in the future, where the ML-
based atomic simulations could be the key player.

The direct modeling of zeolite synthesis is perhaps the 
most challenging task to theoreticians, which is a long-
term goal common to all subjects of chemical synthesis 
of materials. Ultimately, the explicit solvent, the ionic 
additives, the SDA molecules and the precursor reagents 
should be treated in one theoretical framework to account 
for the realistic (hydrothermal) synthetic environment, 
which then leads to resolve the kinetics origin for the 
diversity of zeolite framework. Fortunately, the advent of 
ML based on experimental data has brought attention to 

some key experimental conditions, which facilitates the 
simplification of the simulation model by focusing on the 
important synthetic parameters.
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