
J. Chem. Phys. 156, 094104 (2022); https://doi.org/10.1063/5.0084545 156, 094104

© 2022 Author(s).

Automated search for optimal surface
phases (ASOPs) in grand canonical
ensemble powered by machine learning
Cite as: J. Chem. Phys. 156, 094104 (2022); https://doi.org/10.1063/5.0084545
Submitted: 07 January 2022 • Accepted: 07 February 2022 • Accepted Manuscript Online: 07 February
2022 • Published Online: 01 March 2022

Dongxiao Chen,  Cheng Shang and  Zhi-Pan Liu

COLLECTIONS

Paper published as part of the special topic on Chemical Design by Artificial Intelligence

ARTICLES YOU MAY BE INTERESTED IN

Coupled cluster downfolding methods: The effect of double commutator terms on the
accuracy of ground-state energies
The Journal of Chemical Physics 156, 094106 (2022); https://doi.org/10.1063/5.0076260

ΔNO and the complexities of electron correlation in simple hydrogen clusters
The Journal of Chemical Physics 156, 094102 (2022); https://doi.org/10.1063/5.0073227

Real-space density kernel method for Kohn–Sham density functional theory calculations at
high temperature
The Journal of Chemical Physics 156, 094105 (2022); https://doi.org/10.1063/5.0082523

https://images.scitation.org/redirect.spark?MID=176720&plid=1735782&setID=378408&channelID=0&CID=634322&banID=520620674&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=9ef36e982c8c81bdfc9703d75224adb1dd2af5d5&location=
https://doi.org/10.1063/5.0084545
https://doi.org/10.1063/5.0084545
https://aip.scitation.org/author/Chen%2C+Dongxiao
https://orcid.org/0000-0001-7486-1514
https://aip.scitation.org/author/Shang%2C+Cheng
https://orcid.org/0000-0002-2906-5217
https://aip.scitation.org/author/Liu%2C+Zhi-Pan
/topic/special-collections/chai2021?SeriesKey=jcp
https://doi.org/10.1063/5.0084545
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0084545
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0084545&domain=aip.scitation.org&date_stamp=2022-03-01
https://aip.scitation.org/doi/10.1063/5.0076260
https://aip.scitation.org/doi/10.1063/5.0076260
https://doi.org/10.1063/5.0076260
https://aip.scitation.org/doi/10.1063/5.0073227
https://doi.org/10.1063/5.0073227
https://aip.scitation.org/doi/10.1063/5.0082523
https://aip.scitation.org/doi/10.1063/5.0082523
https://doi.org/10.1063/5.0082523


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Automated search for optimal surface phases
(ASOPs) in grand canonical ensemble powered
by machine learning

Cite as: J. Chem. Phys. 156, 094104 (2022); doi: 10.1063/5.0084545
Submitted: 7 January 2022 • Accepted: 7 February 2022 •
Published Online: 1 March 2022

Dongxiao Chen,1 Cheng Shang,1 ,2 and Zhi-Pan Liu1 ,2 ,3,a)

AFFILIATIONS
1 Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University,
Shanghai 200433, China

2Shanghai Qi Zhi Institution, Shanghai 200030, China
3Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Note: This paper is part of the JCP Special Topic on Chemical Design by Artificial Intelligence.
a)Author to whom correspondence should be addressed: zpliu@fudan.edu.cn

ABSTRACT
The surface of a material often undergoes dramatic structure evolution under a chemical environment, which, in turn, helps determine
the different properties of the material. Here, we develop a general-purpose method for the automated search of optimal surface phases
(ASOPs) in the grand canonical ensemble, which is facilitated by the stochastic surface walking (SSW) global optimization based on global
neural network (G-NN) potential. The ASOP simulation starts by enumerating a series of composition grids, then utilizes SSW-NN to
explore the configuration and composition spaces of surface phases, and relies on the Monte Carlo scheme to focus on energetically
favorable compositions. The method is applied to silver surface oxide formation under the catalytic ethene epoxidation conditions. The
known phases of surface oxides on Ag(111) are reproduced, and new phases on Ag(100) are revealed, which exhibit novel structure
features that could be critical for understanding ethene epoxidation. Our results demonstrate that the ASOP method provides an auto-
mated and efficient way for probing complex surface structures that are beneficial for designing new functional materials under working
conditions.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0084545

I. INTRODUCTION

The functionality of a solid material is much related to its sur-
faces that are exposed to complex environment.1,2 It is notoriously
challenging to characterize the surface than the bulk due to the
added freedoms of atoms/molecules in diffusing, exchanging, and
reacting with environment. In order to distinguish surface atoms,
the surface probing techniques should ideally be capable of operating
under the working conditions and achieve a high spatial–temporal
resolution. Few experimental techniques, however, meet the high
standard, and consequently, many surface-specific phenomena are
hard to resolve to date, e.g., those under the high temperature
and high pressure conditions for catalysis3–5 and in the electric
field and the surrounding of electrolytes for electrochemistry.6–8

New techniques are highly desirable in predicting the structure and
functionalities of surfaces under working conditions.

With the advent of first-principles calculations, theoretical
approaches have become an alternative tool in revealing the thermo-
dynamics and kinetics of a surface in the past two decades.9–16 The
surface evolution under working conditions can be broadly consid-
ered as a phase change in the grand canonical (GC) ensemble where
the chemical potential of species is pinned by environment. In the
GC ensemble, the chemical composition and, thus, the number of
atoms (N) in the simulation system are variable, which disallows the
direct use of common simulation methods, e.g., molecular dynam-
ics (MD) based on first-principles density functional theory (DFT)
calculations. Instead, the trajectory for surface structure evolution
can be retrieved by using the Monte Carlo method at the constant
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chemical potential to mimic the system in the GC Monte Carlo
(GCMC) simulation.17,18 The continuous variation of the atomic
number N in the system is therein approximated by a series of dis-
crete frames changing with time t, each with fixed N(t). For example,
Wexler et al.17 using the GCMC method revealed the possible grow-
ing mechanism of silver surface oxide on the Ag(111) surface within
a particular p(4 × 4) surface periodicity, where the structure candi-
date is generated randomly via the step-wise atom addition/removal
followed by structure relaxation.

Despite the success in specific examples, two leading challenges
in GCMC simulation hindered its wide applications, namely, (i)
to accurately determine the chemical potential of species on the
surface and (ii) to reveal the surface periodicity for the relevant,
often the most stable, structure at given N. Obviously, both are
related to the efficiency of potential energy surface (PES) explo-
ration, which is required to compute the (configurational) entropy
and to find the stable minima in different surface periodicities.
Although many structure search methods are available to date, they
do generally have their own problems, e.g., MD simulation is not
efficient for corrugated PES due to the low ability in surmounting
barriers; the common global optimization methods, such as genetic
algorithm (GA)19–21 and particle swarm optimization (PSO),9,22 are
generally too expensive in computation to apply for large surface
systems and also do not follow reaction kinetics in evolving struc-
tures. For these reasons, the ab initio thermodynamics method
has been more popularly utilized to construct the thermodynamics
diagram for solid–gas interfaces.11,16,23,24 The linkage between the
total energy E at constant N and the Gibbs free energy G is estab-
lished by using standard thermodynamics equations with appropri-
ate approximations. The method only focuses on a limited number
of surface compositions that are often manually generated in the
predefined periodicity and also neglects the kinetics of structure
evolution.

On the other hand, recent advances in machine-learning
simulation25–30 have provided new hope for fast and accurate PES
evaluation. In particular, in a large material system, the PES com-
putation speed using machine learning potential can be several
orders of magnitude (>104) faster than DFT.31,32 By integrating
with stochastic surface walking (SSW) global optimization,33–35

our group has shown in recent years that the thus-generated
global neural network (G-NN) potential can be utilized for
unbiased global structure search starting from a random initial
guess.32,36,37 This offers the possibility for the SSW-NN method
to solve a wide range of heterogeneous catalysis problems, rang-
ing from surface structure reconstruction to catalytic reaction
prediction.38–41

Herein, facilitated by SSW-NN technique, we develop a
general-purpose algorithm for automatic search of optimal surface
phases (ASOPs) in the GC ensemble. The ASOP aims at identify-
ing stable surface phases pinned by the given chemical potential of
species. It can efficiently scan the vast configuration and composi-
tion spaces to find the most stable phase and also yield a trajectory
to the most stable phase that mimics the surface phase evolution
pathway. We demonstrate the ASOP method in the famous silver
surface oxide challenge, i.e., thin oxide layer grown on Ag(111) and
Ag(100) surfaces. Not only the known surface oxide phases, e.g.,
c(4 × 8) pattern on Ag(111), are reproduced, but also a zoo of low
energy new surface phases are identified, which provides important

clues for understanding the surface oxide formation and the high
ethene epoxidation activity of Ag(100) surface oxides.

II. ALGORITHM OF ASOP
Let we first recall the GCMC approach. We define the free

energy of a surface system as G(N, C1, . . ., Ck) with k species, and
the chemical potential of species i (μi) is given by

μi =
∂G
∂Ni

, (1)

where N is the number of moving atoms on the surface and Ci is the
concentration for species i on the surface with Ci = N i/N. In the GC
ensemble, all μi reach the equilibrium with the chemical potential of
environment (μext) to make μi − μi,ext = 0, and thus, in simulation,
one needs to minimize the following difference:

min(μi − μi,ext), (2)

which can be achieved via the Metropolis MC algorithm to make the
state selection according to the probability

p =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 i f μi ≤ μi,ext ,
exp[−μi − μi,ext

kT
] i f μi > μi,ext ,

(3)

as implemented in the GCMC algorithm. By continuously
adding/removing atoms of species i, simulation can gradually reach
the equilibrium state, where μi = μi,ext .

The GCMC simulation is a slow, sequential algorithm in
nature. The structure operation, i.e., atom-wise addition/removal,
generally neglects the surface periodicity that is, in fact, very impor-
tant in real applications. With the increase of system size that
explodes the possible composition space, the GCMC simulation
based on DFT calculations becomes impractical.

In this work, we have designed a new algorithm for GC sim-
ulation with the following four features, aiming to more efficiently
explore the configuration and composition spaces.

(i) An automated multi-grid algorithm is utilized to explore the
composition space in different surface periodicities.

(ii) An automated initial structure generation is designed to yield
structures at a valid periodicity.

(iii) The SSW global structure search based on G-NN potential
is utilized to search for the configuration space in a given
composition and periodicity.

(iv) A new MC scheme is designed to select a group of optimal
phases based on the knowledge from the history of structure
search.

The ASOP algorithm is parallel in nature since the composition
space is discretized into an ensemble constituted by the elements
in a series of grids from coarse to fine grids. The structure search
is always parallelly performed, starting from the coarsest grid that
can be simulated in small surface periodicity and then propagat-
ing toward the finer grids where the MC algorithm is utilized to
screen out the energy favorable compositions by mapping grid ele-
ments from the coarse to fine grid. With the above improvements,
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the ASOP can be utilized for the unbiased and automated search of
optimal surface phases with simple input knowledge, i.e., the bulk
crystal structure, the surface Miller index, and the chemical potential
for species.

We emphasize that by using the SSW-NN global optimiza-
tion for structure search, the ASOP method is not sensitive to the
input guessed structure, i.e., no input structure dependence, and also
greatly improves the efficiency of PES evaluation. The multi-grid
method utilized in ASOP further eliminates the problems in explor-
ing different surface periodicity that are commonly encountered in
GCMC simulation.

Specifically, the ASOP algorithm constitutes three steps, and
the flowchart is schematically shown in Fig. 1.

Step 1: Generating a series of grids, from coarse to fine grids, for
the composition space. Each grid is associated with a unique
supercell size with a particular periodicity, defined by the lat-
tice parameters (Lattj, where j is the index for grid) and the
maximum number of atoms at the full layer (N j), and an ele-
ment in grid corresponds to a composition Cm = {C1, . . ., Ck}
(m is the index of the element in the grid). Thus, the phase
vector (N j, Lattj, and Cm) is utilized as the unique entry of a
phase registered in the phase database. Initially, we start from
the coarsest grid (the smallest supercell), and all compositions
are allowed to search with the equal probability of p(Cm) = 1.
A number of compositions in the current grid are thus selected
randomly as the phase candidates for step 2. The number of
cycles in searching a grid (ncycle) is set as zero.

Step 2: Using the SSW-NN method to search for the structure
of phase candidates one-by-one. The SSW-NN search is per-
formed with only a limited number of steps, generally below
300 steps. The current best structure for each phase and

FIG. 1. Flowchart of the ASOP algorithm that contains three steps. Simula-
tion starts from simple inputs, i.e., bulk crystal structure, the surface index, and
the chemical potential of species, and produces the phase stability at different
compositions, as the colored grids shown here.

their thermodynamic stability obtained from SSW-NN are
stored and updated into the phase database. Now, the program
increments ncycle by 1 and moves to step 3.

Step 3: Using a MC algorithm to update the phase probability p(Cm)
for the next grid. The next grid can still be the same as the cur-
rent grid if ncycle is below a preset value (nmaxcycle) or is a new
grid generated from step 1 when nmaxcycle is reached. Now, the
next grid becomes the current grid and goes back to step 2.

As shown in Fig. 1, the ASOP simulation will scan the PES
from the coarse grid in the small supercell to the fine grid in the
large supercell. The free energy of the phases in the database will
thus be determined, as illustrated by the filled color in each grid. In
the end, the ASOP simulation can provide the most stable phases
(e.g., the deep blue color for the grid element in Fig. 1) and also pro-
duce a low energy channel for the phase evolution with the change
of composition.

In the following, we give a detailed account on the algorithm
for the three steps.

A. Step 1: Generation of composition grids
This step enumerates all the possible supercells, based on which

a composition grid is generated for each supercell. The primitive
cell p(1 × 1) for a given (hkl) surface, defined by a [u, v] vector,
can be cleaved from the bulk crystal. Any supercells of the surface
defined by [u′, v′] vector can then be obtained by using the following
equations:

⎛
⎝
u′

v′
⎞
⎠
newslab

= TM ×
⎛
⎝
u
v
⎞
⎠
primslab

, (4)

A = ∣TM∣ =
RRRRRRRRRRRR

a1 b1

a2 b2

RRRRRRRRRRRR
, (5)

where the transition matrix (TM) must be positive definite (determi-
nant A > 0) and its matrix element can be enumerated, e.g., from−10
to 10 in this work. The A value from Eq. (5) is a scaled area, being the
multiple of the primitive cell size. Based on the Niggli reduced cell
theory,42 only the supercell with the angle between u′ and v′ is in
between 60○–90○ and ∣u′∣ ≥ ∣v′∣ are kept as the valid/non-redundant
supercell candidate. To further reduce the computational cost, we
also limit the maximum of lattice ratio (∣u′∣/∣v′∣) to be less than 3,
which removes too narrow supercells, known to be uncommon from
surface science studies.

Next, we can define a composition grid for each supercell with
each grid element corresponding to a composition (see Fig. 2). The
grid with the smallest A (scaled area) is thus the coarsest grid, and
the finer the grid, the larger the A value is. All the grids will be sorted
by their A value and labeled in the phase database.

Figure 2 uses the surface oxide AgOx grown on the Ag(111) sur-
face to illustrate the composition grid generation. By enumeration,
we can obtain TM (2, 0; −1, 2) and generate a (2 × √3) periodicity
of the Ag(111) supercell, where A is 4. By limiting the maximum Ag
and O coverage to 1 ML (a preset parameter) in this work, we can
thus get the composition grid of (4 × 4) to represent the Ag:O com-
position variation from NAg:NO = 4:1 to NAg:NO = 1:4; see Fig. 2, top
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FIG. 2. Composition grid generation illustrated with Ag(111). The procedure for
generating the grid of (2 ×√3) reconstructed Ag(111) is shown in detail on the top
panel. Each element in the grid represents a composition, as shown in the shaded
area, i.e., Ag1O2 [one Ag atom and two O atoms on the (2 ×√3) reconstructed
Ag(111) slab; see the inset].

grid. The entry for the Ag1O2 phase with (2 ×√3) Ag(111) period-
icity, for example, in the phase database can be registered using the
grid label for (2 ×√3) and the grid element, NAg = 1 and NO = 2.

B. Step 2: Structure exploration for compositions
in a grid

This step aims at identifying the favorable compositions by
scanning selected grid elements in the current grid. The central task
is to find the optimal structure for each grid element. Since the initial
structure for a given composition is generally unknown, an unbiased
global minimum (GM) search is invoked by using SSW-NN global

optimization implemented in the LASP (Large-scale Atomic Sim-
ulation with neural network Potential) code (The details of the
SSW-NN method can be found in the supplementary material). Step
2 is the central part of the ASOP algorithm, which further contains
four stages, as illustrated in Fig. 3. These four stages are executed
repeatedly until all the target grid elements have been explored.
Because the structure search for each grid element is independent,
the algorithm can run efficiently in parallel.

Stage A: Initial structure generation. For a given com-
position in a grid, if the initial structure is not available, we
generate the initial structure by adding atoms one-by-one
into the surface slab. Every newly arrived atom is randomly
added but needs to be not too close (<1.5 Å) to or too far
away (>3 Å) from the other surface atoms. Once the atom is
added, a local structure relaxation based on G-NN potential
is performed. The atom addition is repeated until the given
composition is reached. On the other hand, if the target com-
position in the grid has been searched previously, the best
structure in the previous run will be inherited as the initial
structure.

Stage B: SSW global structure search. Starting from an
initial structure, SSW global optimization with a limited num-
ber of steps (typically <400 steps) is performed to find a current
best structure. For each single SSW-NN run, it is not impor-
tant whether the current best structure is the GM since the
energy favorable compositions will be repeatedly searched,
particularly, in the finer grids.

Stage C: Self-learning of G-NN potential. From the
SSW-NN structure search trajectory, we will select a number of
structures for benchmarking G-NN PES against the DFT PES.
If the stability order of the phases from G-NN result is dif-
ferent from that from the DFT, retraining of G-NN potential

FIG. 3. Structure exploration illustrated by searching the structure of Ag1O2 composition on (2 ×√3)-Ag(111). There are four stages: initial structure generation, SSW-NN
global structure search, G-NN potential retraining, and thermodynamics stability evaluation.
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is performed by adding these phases into database. This step
is essential, particularly at the initial stages, which can greatly
improve the reliability of G-NN PES.

Stage D: Thermodynamics stability evaluation. With
the current best structure obtained from SSW-NN, its stability,
the surface free energy, can be evaluated using

γ = GX/sur f −Gsur f −∑k
i=1Niμi,ext

A
, (6)

where GX/surf , Gsurf are the free energy of the surface with all
incoming species (i from 1 to k) and the clean surface, respec-
tively, N i is the number of atoms for the i species on the
surface, μi,ext is the chemical potential of the i species defined
by environment, and A is the scaled area given by Eq. (5). In
searching for phases with the lowest possible γ, the thermody-
namics equilibrium can be finally established that minimizes
(μi − μi,ext).

Figure 3 illustrates the above four stages exampled by the
Ag1O2 composition grown on Ag(111) in a grid of the (2 × √3)
supercell. Starting from the randomly generated initial structure,
SSW-NN can help to locate a local best structure in less than 100
SSW steps and the low energy structure from the SSW trajectories
is utilized to improve the accuracy of G-NN PES by benchmarking
with DFT calculations. Finally, the stability of the composition at the
grid is computed and recorded in the phase database.

C. Step 3: Favorable composition determination
by Monte Carlo selection

Once the stability γ of all target compositions is updated in the
phase database, we are in a position to rank the favorable compo-
sitions and select the compositions for the next cycle of structure
exploration. The composition favorableness for a grid element at Cm
can be measured by its probability p(Cm) weighted over all grid ele-
ments (g = 1. . .Ng, where Ng is the total number of grid points)
using Eq. (7), where εm is the energy at the grid Cm and ε0 is the
lowest value of εm in the grid [Eq. (8)]. εm is defined as the lowest
value over εm,n [Eq. (8)], where n runs over the lowest energy phases
in the phase database that are collected in history. Each εM,n can be
evaluated using the function in Eq. (9), being a Gaussian-smeared γn
by measuring the composition distance ∥qm − qn∥ between compo-
sition Cm and composition Cn, where q is the fractional coordinate
vector of a composition in the grid [e.g., Ag2O1 in the (2 ×√3) cell,
q = (2/4, 1/4)]. In Eqs. (7)–(9), we typically set the smearing para-
meter as σ = 0.1 and the Boltzmann-type weighting variable as
β = 0.5–1.5 depending on ncycle (β = 0.5 × ncycle). The smaller β value
facilitates the sampling of the higher energy composition,

p(Cm) =
exp(β(εm − ε0)/ε0)
∑Ng

k=1 exp(β(εk − ε0)/ε0)
, (7)

εm = min(εm,n), ε0 = min(εm), (8)

εm,n = γn exp
⎛
⎝
−
∥qm − qn∥

2

2σ2

⎞
⎠

. (9)

If ncycle is smaller than nmaxcycle (3 in this work), we will con-
tinue the structure search at the same grid. If ncycle equals nmaxcycle,
we will move onto the next unexplored grid. By going over all the
composition in the grid one-by-one using the MC algorithm, we will
screen out the compositions for the further structure search: a com-
positionCm is selected if the randomly generated number in between
(0, 1) is smaller than its p(Cm)f. If the number of compositions sur-
vived from MC is too many, we use a hard limit (=15) to restrict the
search for the top p(Cm) compositions. Now, the ASOP simulation
goes back to step 2 for a new cycle.

While the ASOP simulation enumerates all possible periodic-
ities by scanning all supercell grids, it can actually be finished with
low cost. Apart from the utilization of machine-learning potential
in all simulations, it relies on the multi-grid algorithm to reduce the
computational cost, where the composition zone with poor energet-
ics can be labeled at the early stages (in small supercell calculations)
and less explored at the later stages (in large supercell calculations).
In the meantime, the MC scheme allows the poor energetic phase
being selected with a finite probability, which helps to identify the
stable phase with a sharp composition window.

III. APPLICATIONS TO AgOx SURFACE OXIDES
We have applied the ASOP method to determine the silver

oxide structures on Ag(111) and Ag(100). This system is of great
interest due to the wide industrial application of the Ag catalyst
for ethene epoxidation. While the surface oxides grown on Ag(111)
have been well documented, few studies have been carried out for
Ag(100) due to the lack of experimental data, although Ag(100) was
shown to be a better facet for epoxidation.43 A major task in this field
is to identify the stable structure of surface oxides grown on differ-
ent Ag surfaces under the experimental conditions, e.g., 500 K and
1 atm O2 pressure.39,44–46

A. Surface oxides on Ag(111)
In searching for surface oxides on Ag(111), we set the range

of grid dimension from 4 to 16, i.e., AgxOy with x and y from 1–4 to
1–16, which generates 52 distinct grids (supercells) and 6924 compo-
sitions in total. For each grid, a maximum of 15 compositions can be
selected and three cycles (nmaxcycle = 3) of SSW-NN structure search
are performed. Among 6924 possible compositions, the ASOP sim-
ulation explicitly explores 1444 distinct compositions and visits 388
331 minima by SSW-NN in total. The whole simulation finished in
120 h on a Xeon(R) Gold 6126 CPU (2.60 GHz, 80 CPU Cores). Con-
sidering that the SSW-NN method in structural exploration is about
104 times faster than DFT, the same work would take 5000 years
using DFT calculations.

The G-NN potential utilized is the Ag–C–H–O quaternary
potential developed for the LASP project and released in the
website (www.lasphub.com). In the ASOP simulation, this G-
NN potential is benchmarked with DFT calculations and further
improved to describe the surface oxides (see also the supplementary
material). The final G-NN potential learns totally 50 131 structures
in the dataset, with the root mean square (rms) errors for the energy
and force to be 2.76 meV/atom and 0.08 eV/Å, respectively. Chemi-
cal potentials μAg and μO are set to be the enthalpy of bulk Ag per
atom and half of μO2, respectively. μO2 is computed by using the
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FIG. 4. Surface oxides on Ag(111). (a)
The PES contour map for silver surface
oxides on Ag(111) from ASOP simula-
tion, and the energy spectrum of the top
50 stable phases. (b) The structure snap-
shots for three representative phases, as
labeled in the PES map. (c) The (

√
7

× √7) reconstructed Ag(111) lattice,
which is relevant to phase 1 and phase
2 (2 × 1 supercell).

standard molar enthalpy of the formation of Ag2O10 with respect to
the Ag metal corrected by the free energy contribution of gas phase
O2 at the typical catalytic ethene epoxidation condition (500 K,
1 bar)47 (see also the supplementary material).

Figure 4(a) summarizes the results for Ag(111) after the ASOP
simulation. The PES contour map (we have shown the details for
plotting the map in the supplementary material) in Fig. 4(a) plots
the relative stability at different Ag:O compositions collected from
the database (each composition may correspond to a different super-
cell). Obviously, the zone of stable surface oxides (γ < 0) is in a wide
window for the O coverage about 0.3–0.8 ML, while the most sta-
ble zone [blue zone in Fig. 4(a)] occurs at the Ag coverage of about
0.5–0.8 ML and the O coverage of about 0.4–0.7 ML. The right-hand
energy spectrum more clearly shows the energy sequence for the

most stable surface oxides, where the lowest γ is −0.361 J/m2, and
there are many phases with the γ value around −0.3 J/m2.

We then examined the structure of the stable phases, and three
representative phases are shown in Fig. 4(b) and Table I, namely,
phase 1, phase 2, and phase 3 corresponding to 1, 2, and 3 labeled in
the PES map, respectively. The geometries of selected surface oxides
(e.g., those having deep oxidation) are shown in Table S4 of the
supplementary material.

Phase 1, the most stable phase from ASOP, has the O and Ag
coverage of 0.50 and 0.62 ML (Ag5O4), respectively. It is exactly
the well-known c(4 × 8) structure on Ag(111) first revealed in the
experiment48 and confirmed later by ab initio thermodynamics,16,30

which has the cross-linked [AgO4] and [Ag4O4] motifs sharing with
four-fold O atoms. Due to the high O concentration (Ag5O4), this

TABLE I. The stoichiometry, surface periodicity, Ag and O coverage (C), and surface free energy γ for some representative silver surface oxides found in this work that are
compared, if available, to literature studies [in both experiments (expt.) and DFT calculations].

Supporter Stoichiometry Periodicity C(Ag) (ML) C(O) (ML) γ (J/m2) Literature (expt./DFT)

Ag(111)

(phase 1) Ag5O4 (
√

7 ×√7)R19 0.62 0.50 −0.361 (−0.181/−0.160)a Reference 48/16
(phase 2) Ag10O9 (2

√
7 ×√7)R19 0.62 0.56 −0.349 ⋅ ⋅ ⋅

(phase 3) Ag12O6 p(4 × 4) 0.75 0.38 −0.214 (−0.108/−0.118)a References 51 and 52/16
Ag32O15 p(4 × 5

√
3) 0.80 0.38 −0.201 (−0.100/−0.099)a,b Reference 52/16

Ag24O12 c(3 × 5
√

3) 0.80 0.40 −0.202 (−0.078/−0.093)a,b Reference 52/16
Ag27O18 p(7 × 7) 0.55 0.37 −0.129 (−0.114/−0.120)a,b References 16 and 46/16
Ag14O36 p(7 × 7) 0.29 0.73 −0.098 (−0.029/−0.002)a,b References 16 and 46/16

Ag(100)

(phase 1) Ag7O5 (2
√

2 × 2
√

2)R45 0.88 0.62 −0.364 ⋅ ⋅ ⋅
(phase 2) Ag3O2 (2

√
2 ×√2)R45 0.75 0.50 −0.339 Reference 53/23

Ag4O2 c(2 × 2) 1 0.50 −0.238 Reference 53/23
Ag0O8 c(4 × 6) 0 0.33 −0.258b Reference 54/23
Ag0O1 p(2 × 2) 0 0.25 −0.220 Reference 54/23

aThe data in the bracket are the values calculated without vdW correction (D3) in this work (left) and the value from Ref. 16 (right).
bThese structures are not in the ASOP simulation results due to the large surface periodicity and are calculated independently.
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structure was postulated to be the critical transition phase toward
those with subsurface O and further to Ag2O films.16,49

Phase 2 is the second lowest phase with the O and Ag cover-
age at 0.56 and 0.62 ML, respectively (Ag10O9), which has not been
reported in the experiment. The structure can be regarded as the
(2 × 1) supercell of phase 1 with an extra O atom addition (red big
ball in Fig. 5) into the subsurface and, as a result, a Ag atom being
slightly squeezed out from the surface plane. Indeed, the subsurface
oxygen has been observed in the surface science experiment, mim-
icking the catalytic condition,49 and our results confirm that the cost
to have the subsurface O is only 0.012 J/m2 increase in γ.

Phase 3 has the O and Ag coverage of 0.38 and 0.75 ML, respec-
tively (Ag12O6), which is 0.147 J/m2 above phase 1. The structure
corresponds to the commonly observed “p(4 × 4)” phase in surface
science studies for Ag(111) under low O2 pressures (<1 Torr).50–52

The most obvious characteristic is the presence of the Ag(111)-like
metallic Ag6 motif. From the PES map, this phase is, in fact, not the
most stable phase under high O2 pressures (1 bar).

B. Surface oxides on Ag(100)
Encouraged by the success in (111), we have searched the sur-

face oxides on Ag(100) with the input changing from (111) to (100).
Most of the settings in the ASOP simulation is identical to those
for Ag(111), except that the range of the grid dimension is lim-
ited to be 4–12. The final composition space of Ag(100) contains
44 distinct grids (supercells) and 3775 compositions in total. Among
them, the ASOP simulation explicitly explores 1417 distinct compo-
sitions, which in total visits 329 981 minima by SSW-NN. The whole
simulation finished in 90 hours on a Xeon(R) Gold 6126 CPU
(2.60 GHz, 80 CPU Cores).

FIG. 5. Surface oxides on Ag(100). (a) The PES contour map for silver surface
oxides on Ag(100) from ASOP simulation and the energy spectrum of the top
30 stable phases. (b) The structure snapshots for two representative phases, as
labeled in the PES map.

The results for Ag(100) are summarized in Fig. 5(a). Compared
to Ag(111), the surface oxide zone (γ < 0) of Ag(100) in the PES map
of Ag(100) appears to be not localized near a particular composition
but spreads out in a wide region for the O coverage of above 0.3 ML.
This is consistent with the lower Ag coordination of (100) that can
better accommodate O atoms. The energy favorable surface oxides
occur at the region with the Ag and O coverage being 0.6–1.0 and
0.5–0.9 ML, respectively. As shown in the energy spectrum, these
low energy surface oxides generally are close in energetics, γ being
−0.30 to −0.36 J/m2, and the most stable one has γ of −0.364 J/m2.
This suggests that the PES of surface oxides on Ag(100) is glassy
with many possible configurations under catalytic conditions. We
select two representative structures, phase 1 and phase 2 shown in
Fig. 5(b) (also indicated in the PES map) and Table I, to illustrate
the structures on Ag(100). The geometries of selected surface oxides
(e.g., those having deep oxidation) are shown in Table S4 of the
supplementary material.

Phase 1 is the most stable phase identified, which has a Ag7O5
stoichiometry in the (2

√
2 × 2

√
2)R45○ supercell with the O and

Ag coverage being 0.62 and 0.88 ML, respectively. The Ag7O5 phase
on Ag(100) contains the [Ag4O] motif and the planar coordinated
[AgO4] motif. Compared to the most stable c(4 × 8) phase on
Ag(111), the Ag7O5 phase on Ag(100) possesses higher surface
atomic density with three major distinctions: (i) it has a four-
coordinated O on the surface, which is not present in the c(4
× 8) phase on (111); (ii) it has one additional Ag atom as the link-
age; and (iii) all the four Ag–O in the [AgO4] motif pattern are
equally bonded. It is also noted that, while the O coverage is higher
on the Ag7O5 phase than that in the c(4 × 8) phase, all the oxy-
gen atoms are located on the surface: no subsurface O is present.
This makes the Ag(100) surface to have the higher ability to store
O atoms.

Phase 2 has a Ag3O2 stoichiometry in the (2
√

2 × √2)R45○

supercell, with the O and Ag coverage being 0.50 and 0.75 ML,
respectively. It is only 0.025 J/m2 less stable than phase 1.
This structure has been reported previously in the experiment
as a missing-row reconstruction pattern since 25% Ag atoms
of the top Ag(100) layer are missing upon the addition of
O atoms.23,53,54 Similar to the p(4 × 4) phase on Ag(111),
this structure maintains the characteristics of Ag metal sites
and thus can be considered as the consequence of partial
oxidation.

We would like to mention that the PES contour map can
also provide important knowledge on the low energy channel for
the phase evolution. By following low energy compositions, we
can readily identify a path connecting the bare Ag surface to
the most stable phase, as the white dashed lines in Fig. 4(a) for
Ag(111) and Fig. 5(a) for Ag(100). In both paths, the oxygen
atoms first populate onto the Ag surface that reaches a saturated
coverage when the surface Ag atoms remain constant. Next, in
order to further decrease the free energy, surface Ag atoms start
to migrate away (into bulk) accompanied by the reduction of the
surface O atom coverage, which leads to the formation of sur-
face oxides (blue zone in Figs. 4(a) and 5(a)) and finally achieves
the thermodynamic equilibrium. From our PES maps, the low-
oxygen-pressure surface phases as observed in surface science stud-
ies may well not be the intermediate, leading to the most stable
phase under the high O2 pressure conditions of ethene epoxidation,
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since they are deviated from the low energy channel (see phase 3 in
Fig. 4 and phase 2 in Fig. 5).

IV. CONCLUSION
To recap, this work develops a machine-learning based ASOP

method to search for optimal surface phases in the grand canoni-
cal ensemble. This method can effectively explore the surface phase
space with different compositions and surface periodicities. The
key features of the ASOP method include a multi-grid algorithm
to explore the composition space, the SSW-NN global optimiza-
tion for fast structure exploration, and the Monte Carlo scheme
to screen out the favorable compositions. For the great power of
SSW-NN in finding the global minima of complex systems, the
ASOP method is expected to be generally applicable to surface
systems, e.g., having structural defects (vacancies) and supporting
clusters.

The ASOP method is demonstrated in exploring the silver sur-
face oxides grown on both Ag(111) and Ag(100) under the catalytic
relevant conditions. The previously known phases on Ag(111) are
successfully identified, and new surface oxide phases on Ag(100) are
revealed. Our results show that unlike Ag(111), the surface oxides
on Ag(100) have a glassy PES with many energetically close struc-
tures, where new Ag–O patterns emerge. The presence of ethene
may, thus, further alter the most stable surface phase in Ag(100)
under the reaction conditions. The current knowledge can be of key
value for understanding silver oxidation behaviors during ethene
epoxidation.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of methodol-
ogy on the architecture of global neural network potential, SSW-NN
simulation, DFT calculations, the Gibbs free energy computation,
the benchmark of G-NN potential against DFT, the PES contour
map construction, the geometries of surface oxides with the increas-
ing of O coverage, and XYZ coordinates for the stable silver surface
oxides shown in Figs. 4(b) and 5(b).
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