Methanol Synthesis from CO$_2$/CO Mixture on Cu–Zn Catalysts from Microkinetics-Guided Machine Learning Pathway Search

Yun-Fei Shi, Pei-Lin Kang, Cheng Shang,* and Zhi-Pan Liu*

ABSTRACT: Methanol synthesis on industrial Cu/ZnO/Al$_2$O$_3$ catalysts via the hydrogenation of CO and CO$_2$ mixture, despite several decades of research, is still puzzling due to the nature of the active site and the role of CO$_2$ in the feed gas. Herein, with the large-scale machine learning atomic simulation, we develop a microkinetics-guided machine learning pathway search to explore thousands of reaction pathways for CO$_2$ and CO hydrogenations on thermodynamically favorable Cu–Zn surface structures, including Cu(111), Cu(211), and Zn-alloyed Cu(211) surfaces, from which the lowest energy pathways are identified. We find that Zn decorates at the step-edge at Cu(211) up to 0.22 ML under reaction conditions with the Zn–Zn dimeric sites being avoided. CO$_2$ and CO hydrogenations occur exclusively at the step-edge of the (211) surface with up to 0.11 ML Zn coverage, where the low coverage of Zn (0.11 ML) does not much affect the reaction kinetics, but the higher coverages of Zn (0.22 ML) poison the catalyst. It is CO$_2$ hydrogenation instead of CO hydrogenation that dominates methanol synthesis, agreeing with previous isotope experiments. While metallic steps are identified as the major active site, we show that the [−Zn–OH–Zn−] chains (cationic Zn) can grow on Cu(111) surfaces under reaction conditions, which suggests the critical role of CO in the mixed gas for reducing the cationic Zn and exposing metal sites for methanol synthesis. Our results provide a comprehensive picture on the dynamic coupling of the feed gas composition, the catalyst active site, and the reaction activity in this complex heterogeneous catalytic system.

1. INTRODUCTION

Methanol synthesis that converts mixed C1 gas (CO$_2$, CO) and H$_2$ to methanol is a key industrial process for C1 utilization and of particular importance for realizing carbon neutralization. The best industrial catalyst to date, Cu/ZnO/Al$_2$O$_3$ (CZA) ternary composite catalyst, is made by coprecipitation that leads to Cu–Zn containing nanoparticles (5–10 nm, Cu/Zn = 7:3 M ratio) supported on the structural promoter Al$_2$O$_3$. The reaction is operated at high-temperature and high-pressure conditions, for example, 220–280 °C and 50–100 bar, with a mixture of CO and CO$_2$ as the feed gas, where the presence of CO$_2$ can enhance the turn-over-frequency (TOF) rate of CH$_3$OH formation by 2–4 times.

The past 60 years have seen significant efforts to characterize the catalyst structure and determine the reaction mechanism. However, owing to the complexity of the multielement (Cu–Zn–Al–O) catalyst and the huge reaction network, there are still many long-standing puzzles, especially, on two key issues, namely, the role of Zn in the catalyst and the role of CO$_2$ in the reactant, which are central for clarifying the active site and the reaction kinetics.

Two different models of the active site are the most popular to explain the Cu–Zn synergetic effect in CZA catalysts: (i) a composite model of the ZnO$_x$/Cu interface and (ii) a metal alloy model of the CuZn (surface) alloy. While the two models differ in the geometric position and oxidation state of Zn, both of them suggest the intimate contact of Cu and Zn with strong interaction, as implied by the coprecipitation synthetic procedure. For the composite model, the major supporting evidence is the observed graphitic-like ZnO overlayer on the surface of Cu nanoparticles after catalytic reaction using high-resolution transmission electron microscopy, which suggests the presence of a strong metal-support interaction of the catalyst composite. By using density functional theory (DFT) calculations and kinetic Monte Carlo (kMC) simulation, Kattel et al. found a high TOF, 9.0×10^{-2} s$^{-1}$, for methanol synthesis from CO$_2$ hydrogenation on a manually constructed Zn$_x$O$_y$H$_z$/Cu(111) composite model. The activity is further shown to be much higher than that on a 0.11 monolayer (ML) Zn-decorated Cu(211) (Zn replacing...
the Cu at step-edge). On the other hand, the CuZn alloy model also receives strong support from thermodynamics calculations and experiment. CuZn surface alloy can form under in situ reaction conditions due to the reductive ability of CO and H₂ and there is a correlation between the Zn surface coverage and experimental activity. For example, using a Zn-deposited Cu(111) model catalyst, Nakamura et al. reported that the TOF of CO₂ hydrogenation to methanol reaches a maximum of 2.7 × 10⁻² s⁻¹ at 0.19 ML Zn coverage (about 10 times faster than that without Zn), where the surface Zn appears to be largely in the metallic state at a coverage lower than 0.19 ML according to the ultrahigh vacuum (UHV) XPS signal. It should, however, be noticed that the higher activity of the CuZn alloy phase than the pure Cu phase cannot be confirmed from theory. Although there were some claims of high activity of CuZn alloys from DFT calculations, they were later rejected by microkinetics simulations based on DFT kinetics data.

In addition to the debate on the active site, the role of CO appears to be more intriguing. While CO was initially believed to be the carbon source of methanol, the isotopic labeling experiments on commercial CZA confirm that carbon of CH₃OH product comes dominantly from CO₂ (>70%), even though CO is up to 50 times of CO in the feed gas. This important observation is, however, not well rationalized from theory, not least because of the great difficulty to identify the lowest energy pathway in complex systems. Apparently, to date, microkinetics simulations based on DFT energetics from different groups do not agree with each other. For example, van Rensburg et al. showed that the independent CO hydrogenation is 3 orders of magnitude faster than the independent CO₂ hydrogenation, while in the combined CO and CO₂ hydrogenation, the CO₂ selectivity wins over, but the overall rate is incorrectly lower than the independent CO hydrogenation. They found that the catalyst is poisoned by the adsorbed formate (HCOO⁻). By contrast, Yang's group with similar theoretical setups and models showed different results that appear to better agree with experimental facts. The independent CO₂ hydrogenation has a reaction rate similar to CO hydrogenation, although both are slow (TOF < 1 × 10⁻⁵ s⁻¹). In the mixed gas hydrogenation, CO₂ selectivity is promoted more markedly than CO selectivity, reaching the TOF of about 3 × 10⁻² s⁻¹. They suggested that the precovered HCOO⁻ now promotes CO₂ hydrogenation by reducing the reaction barrier of key elementary steps (HCOOH⁻ to H₂COOH⁻) in contrast to the conclusion of van Rensburg et al. Nevertheless, the rate from their results, 7.9 × 10⁻² s⁻¹, is still orders of magnitude lower than that measured from experiments performed on Cu-based catalysts at the same condition (e.g., TOF estimated to be 1.7 × 10⁻¹ to 1.7 s⁻¹ on Cu/SiO₂ with the active site concentration varying from 100 to 1%, at 573 K, total pressure 13.4 bar, p₃⁰₀/p₃¹⁰₀ = 1:4:15).

Obviously, the two issues in CZA catalysis, namely, the Zn promotion and the CO₂ enhancement, are strongly coupled with each other in kinetics. It is of great challenge to establish a comprehensive and self-consistent picture to reconcile all existing puzzles in the field. Novel approaches to treat simultaneously the variance in both the active site structure and the catalytic reaction pathway are highly desirable in the field.

Herein, we develop a microkinetics-guided machine learning pathway search (MMLPS) approach to explore the reaction network of CO₂ and CO hydrogencations and evaluate quantitatively the reaction rates on different Cu and CuZn alloy surfaces. Our MMLPS relies on a five-element Cu–Zn–H–O global neural network (G-NN) potential for fast potential energy surface (PES) evaluation, stochastic surface walking (SSW) reaction sampling (SSW-RS) for revealing unknown pathways, and a fast microkinetics solver to guide the pathway search. Not only the thermodynamics of various Cu–Zn structures, including different Cu, CuZn, and ZnOH-covered Cu surfaces, are resolved, the mechanism of CO and CO₂ hydrogenation is also determined. Our results shed important insights into the role of Zn and CO/CO₂ feed gas ratio on the catalyst structure and methanol synthesis activity.
2. METHODS

2.1. MMLPS Method. Our MMLPS method aims to resolve a complex catalytic network with many likely intermediates at various surface coverages in an automated way as that encountered for CO₂ and CO hydrogenations on surfaces. The MMLPS method is developed upon the SSW-RS method26–28 (see Supporting Information, Section 1.1 for more details on the SSW-RS method), which has been successfully applied to gas-phase single-molecule reactions (e.g., glucose pyrolysis35) and heterogeneous reactions with two reactants28,29 (e.g., CO + H₂O on Cu(111), water—gas-shift reaction). The MMLPS method with the ability to treat a much more complex reaction network has two key features: (i) massively parallel SSW-RS simulations to consider reactions with different compositions (e.g., different coverages); (ii) automatic identification of the kinetically favorable pathways via on-the-fly microkinetics-based rate analysis. In the MMLPS method, all likely reaction patterns are generated through the SSW-RS, which are different from the conventional reaction mechanism generation approaches using specifically designed rules based on the bond matrix30–34 (e.g., RMG31,32, RING33,34, pReSt13). The SSW-RS simulation, also unlike other pathway sampling methods such as metadynamics,35–37 transition path sampling,38 and discrete path sampling,39 does not need a priori knowledge on the reaction (e.g., collective variables to describe products) and thus allows a fully automated search of a complex reaction network when incorporated in MMLPS. The high computational cost associated with PES evaluation is now dramatically reduced with the help of G-NN potential. The flowchart of the MMLPS method is shown in Figure 1 and elaborated in the following.

The MMLPS uses the idea of divide-and-conquer to solve a complex reaction network, where the reaction pathways are explored simultaneously by starting from different intermediate states that differ in chemical species and compositions (e.g., at different surface coverages). As shown in Figure 1, an MMLPS simulation initiates many parallel SSW-RS runs, each named as an SSW-RS branch that starts from a reactant composition (e.g., CO + H₂) aiming to identify the reaction pathways initiating from this reactant composition. In each SSW-RS branch, the reaction information, including the initial state (IS), the final state (FS), and the transition state (TS), is collected and recorded in a reaction pair database (yellow box in Figure 1), shared by all SSW-RS branches, which distinguish different reactions by the name of IS and FS using the extended-connectivity fingerprints with the diameter level 4 (ECFP-4)40 (see Supporting Information Section 1.3 for the example of ECFP-4). The database only stores the reaction pair with the lowest barrier for the same reactions with the same chemical name on the reactants. The reactions related to molecular diffusion on the surface or the surface structure reconstruction (e.g., Zn–Cu atom swap) are not considered in the reaction pair databases because the former is generally fast and non-rate-determining, and the latter decouples generally from catalytic reactions and, if occurs, reflects correctly the heterogeneous surface status during the reaction.

Each SSW-RS branch is controlled by an independent microkinetics module, which is implemented to facilitate on-the-fly reaction pathway analyses. The microkinetics module is to identify an unexplored intermediate associated with low-energy pathways that is then taken as the starting state in the next cycle of SSW-RS (red arrows in Figure 1). The low-energy reaction pathways are first screened using the so-called “circuit reaction theory.” The theory is rooted in microkinetics theory, which regards the reaction network as an analogy to the electrical circuit (also see the recent work by Hu group41 and early publications42,43). By mathematical derivations, it can be shown that the steady-state microkinetics follows the Ohm law of a circuit (see Supporting Information Section 1.4 for the detailed derivation), where each elementary reaction is analogous to resistance and the rate is then the current. The lowest energy pathway, the one equivalent to the branch with the lowest resistance in the circuit, can be then identified using the graph theory.

Here, we briefly describe the method to evaluate the resistance of a pathway. To be general, for an elementary reaction k with several surface adsorbates on the surface, the TS of the reaction can be considered to contain a TS complex (≠), a number of spectating (nonreacting) adsorbates (j = 1, ...), and free surface sites (*). As shown in Supporting Information Section 1.4, the resistance R_k for an elementary reaction k can be computed using eq 1

\[R_k = \exp \left(\frac{\mu_k - \sum_j \mu_j - n_k \mu_0}{k_b T} \right) \]

(1)

where \(\mu_k \), \(\mu_j \), and \(\mu_0 \) are defined to be the “chemical potential” of the TS complex, free site, and the spectating adsorbate j, respectively; \(n_k \) is the number of free sites taking part in the reaction. \(\mu_i \) (i represents the adsorbate j or *) can be further computed using eq 2 by using the coverage-independent Gibbs free energy \(\mu_i^0 \) (\(\mu^0 = 0 \) by definition) and its coverage \(\theta \) at the steady state. It should be noted that the steady-state coverages must be solved iteratively to achieve the reaction balance, which is nontrivial for a complex reaction network. Finally, the total resistance for a single pathway with a sequence of elementary reactions can be obtained from eq 3.

\[R_{path} = \sum_k R_k \]

(3)

The circuit theory can elegantly evaluate the resistance of a pathway, even when the pathway does not end properly (mimicking an open circuit), which is useful when the reaction pair database is not complete yet.

To speed up the microkinetics analysis, the microkinetics module utilized in MMLPS is performed via two stages in two submodules, namely, the fast pathway filter and the microkinetics analyzer. These two submodules are further described in the following.

(a) Fast pathway filter. This step is for fast screening of the best pathway candidates from a complex reaction network. To do so, the resistance of a pathway can be approximately calculated using \(R_{path} \) by using the approximated total resistance \(R_k \) computed using eq 4. Comparing eqs 4 with 1, the steady-state coverage term in eq 2 is neglected, and \(\mu_k^0 + \sum_j \mu_j^0 \) is, in fact, the free energy of the TS, \(G_{TS} \).

\[R'_{path} = \exp \left(\frac{\mu_k^0 \sum_j \mu_j^0}{k_b T} \right) \]

(4)

Here, \(G_{TS} \) is referenced to the initial reactant and can be derived from the total energy (G-NN level in this work) in the reaction pair database with appropriate corrections to free energy. In this work, we set the gas-phase molecules CO₂, CO, H₂, CH₃OH, and H₂O at 500 K and pressure 10, 10, 40, 1, and 1 bar, respectively, under typical industrial conditions for the free-energy correction of gas-phase molecules (see Supporting Information Section 2.1 for more information).

With the resistance value for each elementary reaction, we can use the graph algorithms, namely, Yen’s algorithm47 for the k-shortest paths based on Dijkstra’s algorithm,48 to search for the lowest-energy pathway to every intermediate. All pathways are ranked according to the total resistance of the pathway. The top pathway with the lowest resistance that contains a new intermediate can then be identified, and this new intermediate is selected as the starting reactant in the next cycle of the current SSW-RS branch (red arrows in Figure 1). The current SSW-RS branch will be terminated if no further new intermediates with a low barrier to access (e.g., <2 eV) can be found at the current composition.

(b) Microkinetics analyzer. Every time a certain SSW-RS branch finishes one cycle, we need to merge the individual network into a whole network to run the microkinetics analyzer module. The merging process will align reactions from different sub-branches to the same chemical composition by augmenting or subtracting the gas-phase free energy of the reactants to keep the mass balance, which is
the backward differentiation formula method, The ordinary differential equations of all reactions are solved using state rate, where the species coverages are now determined explicitly. The thermodynamics stability of the surface at various temperatures and CO/CO₂ pressures \(p_{\text{CO}}/p_{\text{CO}_2} \) is described previously, explained in Supporting Information Section 3. Color area for (211) and shaded area for (111) are overlapped in one plot, which shows that (211) forms surface alloys at lower temperatures and \(p_{\text{CO}}/p_{\text{CO}_2} \) ratios.

Figure 2. (a) Most stable structures for Zn-alloyed Cu(111) and Cu(211) surfaces from SSW-NN global search. Black dash indicates the supercell. Color scheme of atoms: Cu, yellow; Zn, blue; edge Cu, brown. (b) Thermodynamics phase diagram of Zn-alloyed Cu(111) and Cu(211) surfaces. The thermodynamics stability of the surface at various temperatures and CO/CO₂ pressures \(p_{\text{CO}}/p_{\text{CO}_2} \) is described by the formation free energy \(\Delta G_{\text{Cu_zn}}(T,p) \), explained in Supporting Information Section 3. Color area for (211) and shaded area for (111) are overlapped in one plot, which shows that (211) forms surface alloys at lower temperatures and \(p_{\text{CO}}/p_{\text{CO}_2} \) ratios.

detailed in Supporting Information Section 1.2. From this merged reaction network, the top-ranked pathways (e.g., maximally 20 pathways) from the reactant to the target product, if present (e.g., from CO₂ + 3H₂ to CH₃OH + H₂O), are determined. With these pathways, we build a full microkinetics model to compute the steady-state rate, where the species coverages are now determined explicitly. The ordinary differential equations of all reactions are solved using the backward differentiation formula method, and the solution is further polished by Newton’s method optimization. If the rate does not change after a certain number of SSW-RS cycles, this branch of SSW-RS is terminated. The MMLPS simulation stops when all SSW-RS branches have exited.

2.2. G-NN Potential Calculations. A five-element Cu–Zn–C–H–O G-NN potential is utilized to speed up the reaction sampling in the methanol synthesis on CuZn alloys. This dataset for training inherits the global datasets utilized previously for Cu–C–H–O and Zn–O–H G-NN potentials, and add new datasets from the Cu–Zn–C–H–O global PES. The G-NN potential is generated by the SSW-NN method in the LASP program, which provides a powerful platform for iterative self-learning of the global PES from SSW. The G-NN generation using the SSW-NN method has been described previously, and the procedure is detailed in Supporting Information Section 4 as well. The final global dataset for Cu–Zn–C–H–O contains 65359 structures, and the NN architecture for each element has a four-layer feed-forward 373-50-50-1 architecture, 373 power-type structure descriptors for the first input layer, and 2 hidden layers, each containing 50 nodes with the hyperbolic tangent activation function. The G-NN potential is available from the LASP website (www.lasphpub.com). The root-mean-square error of the final NN on the whole dataset is 2.99 meV/atom and 0.080 eV/Å for energy and force, respectively. The dataset description is described in Supporting Information Section 4 together with the benchmark between G-NN and DFT calculations for the reaction pairs sampled.

2.3. DFT Calculations and Choice of DFT Functional. All DFT calculations are performed by using plane-wave DFT code, VASP, where the electron–ion interaction is represented by the projector augmented wave pseudopotential. The exchange functional generalized gradient approximation Perdew–Burke–Ernzerhof (PBE) is used for training dataset generation as well as validation, and the kinetic energy cutoff is 450 eV. The first Brillouin zone k-point sampling utilizes the Monkhorst–Pack scheme with an automated mesh determined by 25 times the reciprocal lattice vectors (1 Å). Grimme’s D3 method (DFT-D3) is taken to correct the van der Waals (vdW) interaction. The energy and force criteria for convergence of the electron density and structure optimization are set at \(5 \times 10^{-6} \) eV and 0.05 eV/Å, respectively. The TS is located by the double-ended surface walking method, which is further verified by vibrational frequency calculations and structure extrapolation from the located TS to the neighboring minima. It should be emphasized that, if not explicitly mentioned, all energetics reported in this work are from DFT calculations by reconverging the low-energy G-NN structures.

The choice of DFT functional is known to affect the energetics in the reaction profile and thus change the reaction kinetics. In this work, we utilize the widely used PBE-D3 functional for treating catalytic reactions on CuZn surfaces. In the literature, BEEF-vdW functional is another popular choice for investigating the methanol synthesis on Cu. However, we note that the H atom (H*) adsorption energy is predicted to be \(-0.11\) eV on Cu(111) using BEEF-vdW with respect to the gas-phase H₂, while it is slightly larger, \(-0.24\) eV, using PBE-D3, which is closer to the experimental result of \(-0.3\) to 0.4 eV. Meanwhile, the enthalpy changes for gas-phase reactions CO₂(g) + H₂(g) \(\rightarrow \) CH₃OH(g) + H₂O(g) and CO(g) + 2H₂(g) \(\rightarrow \) CH₃OH(g) are predicted to be \(-0.50\) and \(-1.36\) eV by the PBE-D3 functional and those from the BEEF-vdW functional are 0.00 and \(-0.82\) eV, respectively. Although both functionals are not good enough when compared with the experimental values (\(-0.55\) and \(-0.98\) eV), the PBE-D3 functional appears to provide a better description for CO₂ hydrogenation, the major reaction channel known from the experiment. To reproduce the experimental thermodynamics in our microkinetics analyses, we adopt \(-0.44\) and \(-0.05\) eV corrections for gas-phase CO and CH₃OH free energies (cf. the energy of CO₂ and H₂ are corrected by \(+0.33\) and \(+0.09\) eV when BEEF-vdW functional is used). More details on the influence of the accuracy of reaction energetics on kinetics can be found in Supporting Information Section 2.2.
3. RESULTS

3.1. Thermodynamics of CuZn Surface Alloy. In order to establish a valid surface model, we here revisit the structure of the CuZn surface alloy under the catalytic conditions, focusing on the coverage and the position of Zn. With SSW-NN global optimization to explore exhaustively the stable structure candidates, we are now able to examine in detail the thermodynamics tendency in forming CuZn surface alloy under reaction conditions. The close-packed terrace Cu(111) and monoatomic stepped Cu(211) surface are utilized as the model catalyst where the Zn coverage is varied from 1/9 (0.11) to 4/9 (0.44) ML (with respect to exposed metal atoms). A series of SSW-NN simulations are carried out with Zn randomly replacing Cu on the surface or in the bulk initially. At least 10000 minima for each coverage are visited by SSW-NN, from which the global minima (GM) at different Zn coverages are identified. In total, we identify 1808 unique surface alloy structures after removing the duplicates by using the distance-weighted Steinhardt-type order parameter\(^{62}\) as the structure fingerprint. As depicted in Figures 2a and S6 for all GM structures, we found that Zn atoms strongly prefer to expose on the surface, and importantly, the Zn–Zn metallic bond is not present until a coverage above 0.33 ML for Cu(111) and 0.22 ML for Cu(211).

From the energetics of the GM structures, Figure 2b plots the thermodynamics phase diagram of the CuZn surface alloy on (211) and (111) surfaces, respectively, at different O chemical potentials, \(\mu_O\), by referencing Cu metal and ZnO bulk oxide. \(\mu_O\) can be derived as a function of temperature and relative pressure \(p_{CO}/p_{CO_d}\), from the chemical formula of CO oxidation as detailed in Supporting Information Section 3. From Figure 2b, we find that the reductive gas CO can indeed transform ZnO to Zn in forming CuZn surface alloy on both stepped Cu(211) and Cu(111) terraces, as shown by the red box that indicates the typical reaction conditions. The ZnCu alloy preferentially forms at the Cu step-edge at relatively low CO pressures and becomes thermodynamically feasible at Cu terraces at higher CO pressures.

As shown in Figure 2b, on going to a higher ratio of \(p_{CO}/p_{CO_d}\), where \(\mu_O\) gets lower, the Zn surface coverage increases gradually. The temperature plays a less important role in affecting the Zn coverage. At the typical fix-bed industrial methanol synthesis condition, that is, 500–550 K, \(p_{CO}/p_{CO_d} = 0.1–20\) (the white box in Figure 2b) up to 0.22 ML on (211) step and 0.33 ML on (111) terrace are thermodynamically stable, indicating that pure Cu surface without or with low coverage of Zn is the major metallic component in CZA catalysts. Even under the extreme reduction condition (\(\sim 550\) K, \(p_{CO}/p_{CO_d} = 100\)), we find that the Zn coverage is still no more than 0.33 ML on (211). Specifically, for the (211) surface, when \(p_{CO}/p_{CO_d}\) is less than 2.6 and the temperature is low (500 K), no Zn is present (ZnO is preferred), and at the higher temperature (\(>525\) K) and the high \(p_{CO}/p_{CO_d}\) ratio (\(p_{CO}/p_{CO_d} > 7.8\)), 0.22 ML Zn, namely 0.22 ML Zn–Cu(211), will be the most stable.

By inspecting closely at the GM structures (Figure 2a), we noticed that in all GM structures, Zn atoms occupy the original position of surface Cu atoms and can appear at both terrace and step positions. For the (111) surface, the thermodynamically allowed 0.33 ML Zn–Cu(111) (Figure 2a) has the \(p(\sqrt{3} \times \sqrt{3} R30^\circ)\) surface patterns with Zn separated from each other. For the (211) surface, the first 0.11 ML Zn prefers to stay at the edge of the (211) step, which is at least 0.05 eV more stable than the upper terrace near the edge and 0.15 eV more stable than the lower terrace underneath the step (see Figure 2a). Furthermore, the subsurface and bulk Zn are considerably less stable (>0.25 eV), indicating the strong tendency of Zn enrichment on the surface. Increasing to 0.22 ML Zn coverage, the newly added 0.11 ML Zn prefers the (111) upper terrace, one lattice away from the initial 0.11 ML Zn at the step-edge (see Figure 2a). Apparently, the Zn-segregated configuration with Zn–Zn bonds is less favorable by 0.03 and 0.06 eV for both Zn at the step-edges and the upper terraces, respectively.

Similarly, the GM for 0.33 ML Zn–Cu(211), although being thermodynamically unfavorable at the reaction conditions (outside the white box), has 0.22 ML Zn at the edge and 0.11 ML Zn at the terrace. The fully Zn-decorated Cu(211) is less stable (by 0.07 eV) than this GM and much less stable (by 0.31 eV) than 0.22 ML Zn–Cu(211) at the reaction condition (500 K, \(p_{CO}/p_{CO_d} = 1\)). Our results suggest that the Zn–Zn dimeric structure in the Cu matrix is thermodynamically unlikely under catalytic conditions. Instead, the local structure pattern from 0.22 ML Zn–Cu(211), that is, with 0.11 ML Zn at the edge and 0.11 ML at the nearby upper terrace Zn (Figure 2a), should be a dominant structure pattern at Cu monoatomic steps.

We may emphasize that the previous works considered only limited numbers of likely configurations at selected Zn coverages for modeling CuZn surfaces. For example, the fully Zn-decorated Cu(211) edge utilized by Kuld et al.\(^{24}\) and Studt et al.\(^{25}\) to model CuZn catalysis, although simplifies largely the reaction modeling, is not the thermodynamically favorable surface pattern in CZA catalysts from our results. The global structure exploration as utilized in this work via SSW-NN can better capture the stable surface structures under reaction conditions.

3.2. Reaction Database and Pathways from MMLPS. By using MMLPS, we then investigate catalytic reactions starting from different reactant compositions up to two carbon atoms, including CO\(_2\) + H\(_2\), HCOOH + H\(_2\), HCHO + H\(_2\), HCOO\(^+\) + CO\(_2\) + H\(_2\), and HCOO\(^+\) + HCHO + H\(_2\) on three stable surfaces relevant to the catalytic conditions, that is, Cu(211), 0.11 ML Zn–Cu(211), and 0.22 ML Zn–Cu(211). The compositions with two carbon atoms, for example, HCOO\(^+\) + HCOOH + H\(_2\), are also considered to investigate the possible kinetics influence of coadsorbed species, particularly the adsorbed format HCOO\(^+\). For comparison, Cu(111), the known poor catalyst for methanol synthesis,\(^{10,63,64}\) is also investigated using MMLPS, starting from CO\(_2\) + H\(_2\), HCOOH + H\(_2\), and HCHO + H\(_2\) compositions.

It should be emphasized that MMLPS can sample simultaneously a great number of minima and the reactions in between them. For example, the MMLPS simulation for C1 reactions on Cu(211) visits 1,220,000 minima in total, which are collected from three branches of SSW-RS, that is, CO\(_2\) + H\(_2\), HCOOH + H\(_2\), and HCHO + H\(_2\), with 61 cycles in total and 20,000 minima for each cycle. This leads to a total of 14,958 reaction pairs, \(\sim 1.2\%\) efficiency in finding reactions. By keeping the lowest barrier one, we finally obtain 372 unique elementary reactions with 115 unique intermediates that are stored in the reaction dataset for CO\(_2\) and CO hydrogenation.
Table S4 summarizes the reaction database obtained from MMLPS simulation for Cu(211) as the example, which includes the cycle number of SSW-RS, the total number of minima visited, the total number of reaction pairs collected, the number of unique species, and the number of unique reactions after deleting the redundant information.

To better illustrate the reaction data, we select 14958 reactions from low-energy pathways on Cu(211) obtained from MMLPS and project them into a 2D figure in Figure 3. The x-axis and y-axis of the figure are the collective variables (CV$_1$ and CV$_2$) designed to distinguish different reaction intermediates, including IS, TS, and FS of reaction pairs (the equation of CV can be found in Supporting Information Section 6). The color of the map indicates the density of state reflecting the occurrence frequency of the state in the reactions. The intermediates along the lowest-energy pathway (IS, TS, and FS) are highlighted by brown lines, and their optimized geometries in GM are shown on the side panels, where the color scheme for atoms is as follows: C: gray; H: white; O: red; terrace Cu: yellow; step-edge Cu: brown. Purple crosses indicate the GM of intermediates. H (H$_2$) is omitted in all formulas. Structures of the coordination function-based collective variable are designed to distinguish the states (CV$_1$ and CV$_2$), with the equations shown in Supporting Information Section 6.

![Figure 3. Contour plot for 14958 reaction pairs (IS, TS, and FS) from the low-energy pathways obtained by MMLPS on Cu(211). The color indicates the density of state reflecting the occurrence frequency of the state in the reactions. The intermediates along the lowest-energy pathway (IS, TS, and FS) are highlighted by brown lines, and their optimized geometries in GM are shown on the side panels, where the color scheme for atoms is as follows: C: gray; H: white; O: red; terrace Cu: yellow; step-edge Cu: brown. Purple crosses indicate the GM of intermediates. H (H$_2$) is omitted in all formulas. Structures of the coordination function-based collective variable are designed to distinguish the states (CV$_1$ and CV$_2$), with the equations shown in Supporting Information Section 6.](https://doi.org/10.1021/jacs.2c06044)

Figure 3. Contour plot for 14958 reaction pairs (IS, TS, and FS) from the low-energy pathways obtained by MMLPS on Cu(211). The color indicates the density of state reflecting the occurrence frequency of the state in the reactions. The intermediates along the lowest-energy pathway (IS, TS, and FS) are highlighted by brown lines, and their optimized geometries in GM are shown on the side panels, where the color scheme for atoms is as follows: C: gray; H: white; O: red; terrace Cu: yellow; step-edge Cu: brown. Purple crosses indicate the GM of intermediates. H (H$_2$) is omitted in all formulas. Structures of the coordination function-based collective variable are designed to distinguish the states (CV$_1$ and CV$_2$), with the equations shown in Supporting Information Section 6.)
CH\textsubscript{3}OH* and HCHO*→CH\textsubscript{3}OH*→CH\textsubscript{3}*→CH\textsubscript{3}OH* are at least 0.6 eV higher than the pathway via CH\textsubscript{3}O* (HCHO*→CH\textsubscript{3}O*→CH\textsubscript{3}OH*→CH\textsubscript{3}OH, 0.93 eV) from G-NN calculations.

Considering the reaction data with two C atoms that are collected from HCOO*+ CO\textsubscript{2} + H\textsubscript{2}, HCOO*+ HCOOH + H\textsubscript{2}, and HCOO*+ HCHO + H\textsubscript{2} simulations, the size of the database expands further, and thus the reaction network becomes more complex. These data represent CO\textsubscript{2} and CO hydrogenations on Cu(211) in the presence of another C1 species. There are 2143 unique elementary reactions and 954 unique intermediates, which are pruned from 20,978 reaction pairs and more than 2,500,000 minima visited in 6 parallel SSW-RS runs (∼0.8% efficiency in finding reactions).

From the microkinetics analysis in MMLPS with the target product being set as HCOO* and CH\textsubscript{3}OH, we find that the formate pathway from CO\textsubscript{2} to CH\textsubscript{3}OH and the formyl pathway from CO to CH\textsubscript{3}OH are still the lowest-energy pathways: the additional C1 species does not affect the reaction mechanism. We will discuss the influence of coadsorbed HCOO* on the reaction kinetics in the next section.

3.3. Reaction Mechanisms on Cu and CuZn Surfaces

With the reaction pathways obtained by MMLPS (G-NN calculations), we further validate and converge the low-energy pathways by DFT in order to get more accurate kinetics data. The Gibbs free-energy profiles of the reactions on different Zn-covered surfaces in the absence of HCOO* species are shown in Figure 4. The detailed data are listed in Table S5, which includes the relative (free) energy of key intermediates and TSs in the presence and absence of the spectating HCOO* species. The optimized structures, including the minima and the TS, are also included in the Supporting Information. All energies are with respect to the clean surface and the relevant gas-phase molecules, that is, CO\textsubscript{2}, H\textsubscript{2}, and H\textsubscript{2}O in CO\textsubscript{2} hydrogenation reaction and CO and H\textsubscript{2} in CO hydrogenation.

It might be mentioned that we have compared our DFT energetics (PBE-D3) with the previously calculated data, as shown in Tables S6 and S7, including the work by Grabow and Mavrikakis (PW91 functional),64 Wang et al. (optPBE-vdW

Figure 4. Gibbs free-energy profiles for (a) CO\textsubscript{2} hydrogenation and (b) CO hydrogenation on Cu(111) (black), Cu(211) (red), 0.11 ML Zn–Cu(211) (orange), and 0.22 ML Zn–Cu(211) (blue) at 500 K and 40, 10, 10, 1, and 1 bar of H\textsubscript{2}, CO\textsubscript{2}, CO, CH\textsubscript{3}OH, and H\textsubscript{2}O, respectively. All structures along the pathways can be found in the Supporting Information.
functional). For the reaction barriers of eight key elementary reactions in CO$_2$ and CO hydrogenations, we find that the calculated barriers on Cu(111), Cu(211), and 0.11 ML Zn–Cu(211), although in different DFT functionals, agree generally well with the average deviation below 0.10 eV. There are some reactions with large deviations, which are, fortunately, kinetically less important, for example, 0.72 eV difference in CH$_3$O* hydrogenation between our results and the work of Kattel et al. (PW91 functional). These differences are mainly caused by the TS geometry, where MMLPS utilized in this work identifies the better TS structure (see the Supporting Information for the optimized structures). In the following, we report in detail our results on Cu surfaces and Zn–Cu alloy surfaces.

Cu surfaces. On the Cu(111) surface, the key intermediates, such as CHO*, HCOO*, and H$_2$COOH*, are generally much less stable than those on Cu(211). As a result, the highest energy on Gibbs free-energy profile of CO$_2$ hydrogenation is 1.98 eV high on Cu(111), which corresponds to the TS of CH$_3$O* + H*, as indicated in Figure 4 black lines. For CO hydrogenation, the highest energy is 1.67 eV, which takes place at the CHO* + H* step. Both of them are much higher than those on the stepped Cu(211), suggesting the low activity of the (111) surface. Thus, in the following, we will focus on the more active Cu(211) to elaborate on the reaction mechanism.

For CO$_2$ hydrogenation on Cu(211) (red line Figure 4a), due to the weak adsorption of CO$_2$, the first step of CO$_2$ hydrogenation follows an Eley–Rideal mechanism in which the gas-phase CO$_2$ reacts with an adsorbed H* atom to produce a bidentate formate HCOO* adsorbed at the step-edge (Figure 3 and the structure shown in Figure S9). Since the reaction needs to overcome the gas-phase entropy of CO$_2$, it has a high free-energy barrier of 1.40 eV. The second H* then attacks one O atom of HCOO*, forming formic acid, HCOOH*, with a free-energy barrier of 1.09 eV, and HCOOH* adsorbs at the edge site through its carbonyl oxygen. The third H* reacts with the C atom of HCOOH* to generate H$_2$COOH* with a free-energy barrier of 0.68 eV, equivalent to 1.39 eV of the overall barrier with respect to CO$_2$(g) and H*. The H$_2$COOH* is unstable and can easily dissociate to HCHO* and OH* with a free-energy barrier of 0.44 eV. Further hydrogenation of HCHO* then creates CH$_3$O*, which is exothermic by 0.56 eV with a low barrier of 0.22 eV. Finally, CH$_3$O* is hydrogenated to CH$_3$OH* with a free-energy barrier of 0.67 eV, and the latter can then desorb to release 0.45 eV. The (211) surface is recovered once the remaining OH* is hydrogenated to water that leaves the surface. In summary, the CO$_2$ hydrogenation to formate (CO$_2$ + H*) and the H$_2$COOH* formation (HCOOH* + H*) are the two key steps with similar overall free-energy barriers on Cu(211).

For CO hydrogenation on Cu(211), the reaction starts from the adsorption of CO at the bridge site of the step-edge that is exothermic by 0.19 eV in free energy. Next, CO* reacts with H* to generate formyl CHO*, which needs to overcome a 0.90 eV free-energy barrier, and the reaction is endothermic by 0.89 eV. Since CHO* can readily return back to CO*, it needs to react immediately with another nearby H* to become HCHO*. The formation of HCHO* (CHO* + H*) is thus the key step with an overall free-energy barrier of 1.45 eV with respect to CO* and H*. The further hydrogenation steps from HCHO* to CH$_3$OH are identical to those in CO$_2$ hydrogenation.

Zn–Cu alloy surfaces. Our results show that the presence of Zn does not change the reaction mechanism of CO$_2$ and CO hydrogenation, as shown in Figure 4. Focusing on the key reaction steps (i.e., CO$_2$ + H*, HCOOH* + H*, CHO* + H*), we can find that Zn alloying slightly modifies the overall barrier but generally in the direction to increase the barrier. The overall free-energy barriers of these key reaction steps generally increase slightly in the presence of Zn. The salient features of the reactions on Zn–Cu(211) are summarized as follows.

(i) The presence of Zn increases the stability of the adsorbed HCOO* and CH$_3$O*, both with O-metal bonding, but weakens slightly the adsorption of other species with H-metal and C-metal bondings, such as H* and HCOOH*. The free adsorption energies of HCOO* and CH$_3$O* are 0.04 and 0.10 eV stronger on 0.11 ML Zn–Cu(211) than on Cu(211), and they are further enhanced by 0.03 and 0.17 eV on 0.22 ML Zn–Cu(211), respectively. On the other hand, the adsorptions of H*, HCOOH*, and H$_2$COOH* are weakened by 0.01, 0.08, and 0.01 eV on 0.11 ML Zn–Cu(211), respectively, and they are weakened by 0.09, 0.06, and 0.05 eV on 0.22 ML Zn–Cu(211), respectively, compared with those on Cu(211).

Interestingly, we observe the adsorbate-induced Zn–Cu exchange on Zn–Cu alloy. Because the adsorption HCOO* prefers the bidentate geometry with two O bonding with metals, it can reconstruct the (211) step-edge by forming a Zn–Zn dimer pattern in the 0.22 ML Zn–Cu(211), as shown in Figure S9c. The adsorption structure of HCOO* on the Zn–Zn dimer is, however, only 0.03 eV per HCOO* lower than that on the non-reconstructed surface (i.e., on the Zn–Cu pair). This suggests that Cu–Zn exchange under reaction conditions has been properly considered in our MMLPS and has only negligible effects on reaction profiles.

(ii) The presence of Zn generally destabilizes the TS of the key reactions. The Gibbs free energy is 0.04 eV higher for the TS of CO$_2$ + H*, 0.01 eV for the TS of HCOOH + H*, and 0.08 eV for the TS of CHO* + H* on 0.11 ML Zn–Cu(211) than Cu(211). The values of the three reactions change to 0.10, 0.14, and 0.14 eV on 0.22 ML Zn–Cu(211). This trend can be understood since these TSs generally involve the C-metal or H-metal bonding, as shown in Figure S9, where Cu is preferable in bonding.

The role of HCOO* spectator. Since MMLPS also maps out the reaction pathways in the presence of HCOO* spectator, we are in a position to compare systematically the free energy for CO$_2$ and CO hydrogenations on the surfaces in the presence of 0.11 ML HCOO* on Cu(211) and Zn–Cu(211) surfaces. The DFT energetics are also listed in Table S5, and the free-energy profiles are shown in Figure S10.

We find that even with only 0.11 ML HCOO*, not only the most adsorbed intermediates are weakened in adsorption but also the TSs become less stable, which leads to the higher barrier in the presence of HCOO* spectators. As a good example, the adsorption energy of HCOO* itself (0.22 ML) is destabilized by 0.33 eV on Cu(211), 0.35 eV on 0.11 ML Zn–Cu(211), and 0.45 eV on 0.22 ML Zn–Cu(211). This is apparently due to the fact that the first HCOO* occupies the step-edge, and thus the second HCOO* has to bond with the terrace site from 0.11 to 0.22 ML (Figure S11).

Importantly, the overall free-energy barrier of H$_2$COOH* formation in the presence of HCOO* spectator increases by
0.19, 0.19, and 0.14 eV on Cu(211), 0.11 ML Zn−Cu(211), and 0.22 ML Zn−Cu(211), respectively. Since the TS of HCOOH* + H* is at the highest energy position on the Gibbs free-energy profile, it implies that the spectating HCOOH* is a poisoner to the CO2 hydrogenation.

We note that the only species that becomes more stable in the presence of HCOOH* spectator is the adsorbed H2O* that gains an extra 0.50 eV in adsorption. This configuration features the formation of an H-bonding network between H2O* and nearby HCOOH* at the step-edge of (211) (Figure S11), which was ignored previously in the work of Wu and Yang.23 We will show later that the strong adsorption of H2O* nearby the preadsorbed HCOOH* leads to high coverage of H2O* at the steady state and thus a lower rate to methanol on 0.11 ML HCOOH*/Cu(211) (Figure S14).

3.4. Microkinetics. Based on the DFT energies (all data detailed in Table S5), we then perform microkinetics simulations to evaluate the reaction rate on different catalyst surfaces. Our main results are shown in Figure S5a, where the calculated TOF [log(TOF)] at the steady state is plotted against the reaction temperature from 480 to 580 K. The pressures for the gas-phase CO2, CO, H2, CH3OH, and H2O are set at a typical industrial reaction condition, that is, 10, 10, 40, 1, and 1 bar, respectively. In microkinetics simulation, since all reactions occur exclusively at the step-edge of (211), the coverage refers to the effective coverage θeff on the step-edge sites only, while the true coverage θ on (211) reported below is 1/3 of θeff. Three key findings for CO and CO2 hydrogenations on Cu and CuZn surfaces are thus summarized in the following.

First, as shown in Figure 5a, CO2 hydrogenation is markedly faster than CO hydrogenation on the two most active catalysts, that is, Cu(211) and 0.11 ML Zn−Cu(211), both being the stepped sites. The stepped sites as appeared in Cu(211) are much more active than the (111) terrace by at least 3 orders of magnitude (Figure 5a inset). The computed TOF for reaction on Cu(211) at 500 K is 2.8 × 10^−3 s−1, which is 10 times faster than that of CO hydrogenation (2.2 × 10^−3 s−1). The slowest elementary step in CO2 hydrogenation is HCOOH* + H* reaction (r = 5.1 × 10^−3 s−1) at the steady-state, which is still 1 order of magnitude faster than the one in CO hydrogenation, CHO* + H* (r = 2.2 × 10^−3 s−1). This difference originates not from the forward reaction barrier but from the extremely low coverage of CHO* species (θCHO* = 4.0 × 10^−12 ML), which can readily decompose back to CO* and H*. The slower rate of CO hydrogenation is thus caused by the poor stability of CHO* intermediate on Cu surfaces compared to HCOOH* and HCOOH* intermediates in CO2 hydrogenation.

In total, 92.7% of CH3OH comes from CO2 at 500 K on Cu(211), and it drops to ~62.2% at 800 K. The simulation results agree with the observation that CO2 is the dominant carbon source, for example, 91.9% from CO on Zn-free Cu/MgO system (523 K, CO/CO2/H2 = 6/8/59, p_{tot} = 30 bar) by the isotopic labeling experiment.19 We also examine the TOF of methanol produced from CO2 and CO at different CO2 contents in the mixed gas (p_{CO} + p_{CO2} = 20 bar), which is plotted in Figure S12, and find that major source of methanol is CO2 as long as the CO2 content is larger than 8%.

Second, the presence of Zn in the CuZn alloy is beneficial at low Zn coverage (0.11 ML) above 540 K but slows the methanol synthesis in all other conditions. On 0.11 ML Zn−Cu(211), the CO2 hydrogenation rate differs by no more than 1.5 times from that on Cu(211), being slower at lower temperatures (<540 K) and higher at higher temperatures. However, on 0.22 ML Zn−Cu(211) (local Zn high coverage at step-edge), the CO2 hydrogenation rate is several times slower compared to the rate without Zn. Focusing on the HCOOH*...
+ H* step, we find that at 500 K, although the reaction rate constant of HCOOH* + H* on 0.22 ML Zn–Cu(211) ($k_e = 2.7 \times 10^{10}$ s$^{-1}$) is faster than that on Cu(211) ($k_e = 1.6 \times 10^{9}$ s$^{-1}$), both θ_H and θ_{HCOOH}^* (0.13 ML and 3.3 \times 10$^{-9}$ ML, respectively) are lower than those on Cu(211) (0.29 ML and 1.2 \times 10$^{-8}$ ML, respectively). It leads to 5 times lower forward reaction rate on 0.22 ML Zn–Cu(211) ($r_e = 1.0 \times 10^{7}$ s$^{-1}$) compared with clean Cu(211), and thus CO$_2$ hydrogenation on 0.22 ML Zn–Cu(211) has a TOF of 9.7 \times 10$^{-3}$ s$^{-1}$ and is 2.9 times lower than that on clean Cu(211).

Third, the presence of HCOO* spectators decreases the methanol formation rate for all catalysts studied, as shown in Figures 5b and S13. For example, Figure 5b shows that at 500 K, on 0.11 ML HCOO*-covered Cu(211), CO$_2$ and CO hydrogenation rates are only 6.6 \times 10$^{-5}$, 3 \times 10$^{-5}$ s$^{-1}$, both being 2 orders of magnitude slower than those on clean Cu(211). A major reason for the slow kinetics on 0.11 ML HCOO*/Cu(211) is the high coverage of H$_2$O at the step-edge (Figures S11 and S14). Compared to Cu(211), 0.11 ML Zn–Cu(211) is less sensitive to the HCOO* poisoning, where the rate drops by ~10 times in the presence of the HCOO* spectator at 500 K.

Figure 5c shows further the steady-state coverage of key intermediates on Cu and Zn–Cu(211) surfaces at 500 K. On Cu(211), the surfaces are mainly covered by H* [e.g., 0.29 ML at 500 K on Cu(211)], and the other species with relatively high coverage include HCOO* (0.013 ML) and CO* (3.7 \times 10$^{-4}$ ML). The low coverage of HCOO* suggests that the HCOO* poisoning does not actually occur. In fact, our microkinetics simulation based on the DFT data of 0.11 ML HCOO*-covered Cu(211) confirms that the HCOO* coverage cannot maintain at the present value of 0.11 ML (see Figure S14) but drops to 10$^{-5}$ ML. The Zn alloying can also change the coverage of species, as plotted in Figure 5c, leading to lower coverage of H* and higher coverage of HCOO*. For example, the H* and HCOO* coverage is 0.13 and 0.064 ML on the 0.22 ML Zn–Cu(211) surface, respectively, which results in a lower TOF for the catalyst.

4. DISCUSSIONS ON THE ACTIVE SITE

By computing the thermodynamics of CuZn alloy formation, this work confirms the thermodynamics tendency in forming CuZn alloy under reaction conditions, where pure Cu and 0.11 ML Zn–Cu(211) are the most common catalysts at a wide range of experimental conditions. With further reaction pathways sampling on CuZn alloy surfaces, we find that the low Zn coverage (0.11 ML) at the (211) step provides a similar activity as pure Cu in CO$_2$ hydrogenation, but the higher Zn coverage (0.22 ML) poisons the catalyst. Indeed, a recent experiment by Frei et al. reported a negative effect of CuZn alloy on methanol synthesis under industrial conditions, in which the higher content of CuZn alloy prepared by using the higher H$_2$ activating temperature shows a lower CH$_3$OH formation rate and a higher apparent activation energy.

Since our kinetics results for Cu and CuZn alloy surfaces do not support the beneficial role of Zn in the CZA catalyst (e.g., Cu/ZnO catalyst is more than 10 times higher than ZnO-free Cu/SiO$_2$ catalyst in the experiment), it is natural to wonder what else might contribute to the high activity of CZA catalysts. Following the literature in the Introduction, we are now in a better position to rethink the other popular active site model, that is, the cationic Zn, including the ZnO overlayer on Cu surfaces and the zinc formate species. However, compared to CuZn alloys, theoretical studies on the cationic Zn are still rather limited due to the lack of valid structure models. There were a few attempts to construct the likely structural models, including ZnO overlayer on Cu(111), Zn$_2$O$_3$ layer, and Zn$_2$O$_x$H$_y$ clusters on Cu(111). As a representative, Kattel et al. proposed an interesting ZnOH model with a Zn$_6$O$_x$H$_y$ cluster on Cu(111) (Figure 6a) and obtained the TOF of 0.09 s$^{-1}$ for methanol synthesis by DFT calculations and kMC simulation, which is close to the experimental TOF.

Figure 6. Structures of ZnOH overlayer on Cu(111) and the phase diagram of Cu–Zn catalyst after considering the ZnOH overlayer structure. (a) Model proposed previously by Kattel et al.; (b) global minimum identified in this work. The color scheme for atoms is as follows: H: white; O: red; Cu: yellow; and Zn: blue. (c) Thermodynamics phase diagram of Cu–Zn catalyst at 500 K by considering both the CuZn alloy and the ZnOH overlayer. The thermodynamics stability of the surface at various H$_2$ pressures and CO/CO$_2$ pressures (p$_{CO}$/p$_{CO_2}$) is described by the formation free energy, explained in Supporting Information, Section 3. Color area for (111) and shaded area for (211) are overlapped in one plot, which shows that the ZnOH overlayer on (111) is present together with Cu(211) and 0.11 ML Zn–Cu(211) under typical reaction conditions.

Inspired by these previous works, we also utilize the SSWNN method to explore the likely Zn$_6$O$_x$H$_y$ structures on different supercells of Cu(111), Zn$_2$O$_x$H$_y$/Cu(111), with various x, y, and z compositions (Zn coverage is \leq 1 ML). Interestingly, the structure proposed by Kattel et al. (Figure 6a) is in fact not the most stable structure. From our simulation, the global minimum configuration is a Zn$_6$O$_x$H$_y$ composition on a Cu(111) $p(\sqrt{3} \times \sqrt{3})$ supercell with the matrix notation (31 – 12), as shown in Figure 6b. This GM has a structure pattern of [Zn–OH–Zn–] chains, where each Zn cation is linked by two OH groups and sits at the
hollow site of Cu(111). Under the reaction condition, this chain structure is 0.042 eV more stable per Cu(111) $p(1 \times 1)$ unit cell with respect to ZnO bulk, Cu(111), and H$_2$ (500 K, 10 bar CO and CO$_2$, 40 bar H$_2$, see Supporting Information, Section 3 for the chemical potential of O) (c.f. the structure proposed by Kattel et al. is 0.050 eV less stable per Cu(111) $p(1 \times 1)$ unit cell than the GM). The Bader charge analysis shows that the Zn in the chain structure is cationic, +0.76 to 0.78 lel, but is less positively charged than Zn in ZnO (+1.19 lel).

By combining with the thermodynamics data on CuZn alloys, we can now update the Cu–Zn phase diagram in Figure 6c (see Supporting Information, Section 3 for details on computing the thermodynamics). Apparently, Cu(211), 0.11 ML Zn–Cu(211) alloys, and the ZnOH overlayer structure are the three stable phases under reaction conditions where the partial pressure of H$_2$ exceeds ∼1 bar.

Our results imply that the Cu–ZnO catalyst structure is dynamic under different H$_2$, CO, and CO$_2$ pressure conditions, which can be utilized to understand the puzzling observations in the experiment. For example, ex situ TEM reveals the ZnO$_2$ overlayer on the Cu surface for the H$_2$-activated catalyst, which differs from the observations of only clean Cu surfaces without ZnO$_2$ overlayer by in situ TEM at 1 mbar H$_2$ 300 °C at UHV condition. From our results, the insufficient H$_2$ pressure in the in situ experiments cannot lead to the formation of the ZnO$_2$ overlayer (see Figure 6c), where the ZnO$_2$ overlayer must stem from the ZnOH ([-Zn–OH–Zn–]) precursor thin layer that is stable above a certain H$_2$ pressure (1 bar). The H$_2$ acts as the carrier to move oxidized Zn in ZnO to partially reduced Zn (ZnOH) on Cu surfaces.

Beck et al. recently reported that during temperature-programmed reduction (25–500 °C), Zn K-edge X-ray absorption near-edge structure signal hardly changes at p_{H_2} ≤ 100 mbar but changes more pronouncedly when p_{H_2} exceeds 1 bar, indicating that H$_2$ pressure is critical for the structure evolution of Zn, as also suggested by us in Figure 6c. In their catalysis experiment, only independent CO$_2$ hydrogenation was investigated for methanol synthesis, from which they concluded that the CuZn alloy does not form to a large extent and is thus not the key active component. We would like to emphasize that the active site identified in this work can be both Cu steps and low-Zn content CuZn alloy steps (Figure 5a), and therefore, the lack of CuZn alloy in the pure CO$_2$ hydrogenation does not rule out the Cu steps being the active site since metallic Cu is always a dominant component in the CZA catalysts. In addition, the copresence of CO$_2$ as commonly utilized in the industry for methanol synthesis on CZA catalysts, is known to be critical to the overall methanol production activity. The presence of CO can further promote the CuZn alloy formation at surface steps from our results, as shown in Figure 2b, where the chemical potential of O is controlled via the ratio of CO and CO$_2$ (p_{CO}/p_{CO_2}).

Based on the results from this work and the knowledge from the previous work, we propose the following picture for the CZA catalyst structure. Obviously, the catalyst structure dynamically evolves under catalytic conditions: ZnO close to the Cu/ZnO interface can be partially reduced by H$_2$ and migrates to Cu surfaces in forming the more stable [-Zn–OH–Zn–] overlayer structure at high H$_2$ pressures (e.g., the calcination stage of catalyst). These structures can be further reduced by CO or H$_2$ in the feed gas to form the CuZn surface alloy. In the meantime, the Zn atoms on Cu surfaces can also be reverted back to the [-Zn–OH–Zn–] overlayer by oxidative adsorbates generated during methanol synthesis (e.g., OH*, H$_2$O*, HCOO*, etc.).

The essentiality of H in the [-Zn–OH–Zn–] overlayer structure appears to be critical for understanding why H$_2$ is widely used to activate catalysts instead of using other reducing agents such as CO alone. We expect that the [-Zn–OH–Zn–] chain structure may serve as a precursor state of ZnO$_2$ overlayer on Cu surfaces, which can effectively protect small Cu nanoparticles from sintering. On the other hand, as for the role of CO, a suitable window of CO/CO$_2$ ratio is critical for forming the low-Zn content CuZn surface alloy steps (Figure 2b), where the Zn helps to stabilize the stepped sites and thus facilitate CO$_2$ hydrogenation to methanol. Low CO pressure could lead to the Cu metal sites covered by [-Zn–OH–Zn–] overlayer structures and thus decrease the overall activity. Therefore, despite CO being much less active than CO$_2$ in hydrogenation, CO is required to expose more metallic Cu and CuZn step-edges under reaction conditions. Further work is still needed to clarify the structure evolution of cationic Zn during methanol synthesis on CZA catalysts.

5. CONCLUSIONS

To recap, this work combines machine learning atomic simulation, thermodynamics analysis of surface structures, and automated reaction pathway identification to resolve the long-standing puzzles on the mixed gas CO$_2$/CO hydrogenation to methanol on Cu and CuZn surfaces. In particular, we develop a microkinetics-guided machine learning reaction pathway search method (MMLPS) for automated reaction pathway identification. The MMLPS method incorporates SSW-RS pathway exploration, a fast pathway filter, and a microkinetics solver. It utilizes the idea of divide-and-conquer to solve a complex reaction network with many intermediates and different surface coverages. Our main conclusions are highlighted as follows.

(i) CuZn alloy surfaces are thermodynamically favorable under methanol synthesis conditions (in the presence of CO and H$_2$), but the Zn coverage is limited to 1/3 ML on Cu(111) and 2/9 ML on Cu(211). The presence of CO helps to form the CuZn surface alloy that occurs preferentially at the step-edge site. In addition to the CuZn metal alloy at the step-edge, ZnOH overlayer on Cu surface is also likely to form above H$_2$ pressure 1 bar, which has a [-Zn–OH–Zn–] chain pattern with each OH being two-coordinated with nearby Zn. These Zn are cationic with +0.76 to 0.78 lel. The CZA catalyst structure is thus dynamic under reaction conditions controlled by H$_2$, CO, and CO$_2$ pressures.

(ii) The kinetically favorable pathway for CO$_2$ hydrogenation follows the formate mechanism (CO$_2$+HCOO*→HCOOH*→HCHO*→CH$_3$O*→CH$_3$OH*) and that for CO hydrogenation follows the formyl mechanism (CO*+CHO*→CH$_2$O*→CH$_3$OH*). For CO$_2$ hydrogenation, both HCOO* formation and H$_2$COOH* formation are kinetically important and have similar overall free-energy barriers. For CO hydrogenation, it is the HCHO* formation that determines the overall free energy of methanol synthesis.

(iii) From microkinetics, the TOF of methanol synthesis at 500 K for CO$_2$ hydrogenation is 2.8 × 10$^{-3}$ s$^{-1}$ on Cu(211), much faster than that of CO hydrogenation (2.2 × 10$^{-3}$). Only at the high coverages of Zn, that is, 0.22 ML, does the TOF...
decrease substantially to 9.7×10^{-3} at 500 K. The active sites for methanol synthesis are thus metallic Cu and low-Zn content CuZn steps. The coverage of HCOO* is low (<0.07 ML), which suggests that the HCOO* poisoning does not actually occur.

■ CODE AVAILABILITY
The MMLPS code is openly available on the website (https://github.com/lasphub/MMLPS).

■ ASSOCIATED CONTENT

* Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c06044.

MMLPS; free-energy corrections; equations for constructing thermodynamics phase diagram; SW-NN method and G-NN potential; GM structures for 0.44 ML, Zn–Cu(211) and Zn–Cu(211); reaction pair database: the CVs for viewing and other information; Gibbs free energy of key species based on DFT energetics; comparison of reaction barriers with previous studies; reaction snapshots for key reaction steps on (Zn–)Cu(211); reaction profiles on Cu and CuZn surfaces with HCOO* spectator; and microkinetics simulation results (PDF)

XYZ coordinates for key reaction states (TXT)

■ AUTHOR INFORMATION

Corresponding Authors
Cheng Shang — Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Qi Zhi Institution, Shanghai 200030, China; Email: cshang@fudan.edu.cn

Zhi-Pan Liu — Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Qi Zhi Institution, Shanghai 200030, China; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Email: zpliu@fudan.edu.cn

Authors
Yun-Fei Shi — Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China; Email: yfshi@fudan.edu.cn

Pei-Lin Kang — Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China; Email: plkang@fudan.edu.cn

Zhi-Pan Liu — Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China; Email: zpliu@fudan.edu.cn

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.2c06044

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the National Key Research and Development Program of China (2018YFA0208600), the National Science Foundation of China (12188101, 22033003, 91943501, 91745201, 92145302, 22122301, and 92061112), and the Tencent Foundation for XPLORER PRIZE.

■ REFERENCES

