Destruction and Preservation of Nonstoichiometric ZnCr Oxide Catalyst

from Machine-Learning Simulation

Sicong Ma,¹ Cheng Shang² and Zhi-Pan Liu^{1,2,3*}

¹ Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

² Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China

³ Shanghai Qi Zhi Institution, Shanghai 200030, China

Corresponding Author: zpliu@fudan.edu.cn

Method

Deactivation barrier estimation:

- The reaction rate of methanol yield (r_r) is approximately 200 g kg_{cat}⁻¹ h⁻¹ at 673 K (J. Chem. Soc., Chem. Commun. 1984, 10, 656).
- (2) The selectivity of syngas-to-alcohol decreases over time from 80 wt% to 60 wt% after 1000 hours (*Fuel Process. Technol.* **2019**, *193*, 53).
- (3) Based on (1) and (2), we can estimate the deactivation rate (r_d) is 0.04 g kg_{cat}⁻¹ h⁻¹ (200 * (80-60)/ 100 / 1000 = 0.04)
- (4) The ratio of deactivation rate to reaction rate (r_d/r_r) is approximately 1:10000, that is

$$\frac{r_d}{r_r} = \frac{A_d * e^{-E_{a,d}/RT}}{A_r * e^{-E_{a,r}/RT}} = 1/10000$$

(5) We assume the pre-exponential factor of deactivation (A_d) is equal to the pre-exponential factor of reaction (A_r). Because the apparent experimental reaction barrier for syngas-to-methanol ($E_{a,r}$) is ~1.20 eV (113±5 kJ mol⁻¹, *Catal. Lett.* **1989**, *3*, 65), the energy barrier of deactivation ($E_{a,d}$) is therefore 1.73 eV.

Figure S1. The structures of $ZnCr_2O_4$ (111) and $Zn_3Cr_3O_8$ (0001) surfaces.

Figure S2. The energy profile of surface O_v agglomeration.

Starting from the perfect $Zn_3Cr_3O_8$ (0001) surface, two surface O atoms can be readily removed by reacting with H₂ that releases the energy of 0.44 and 0.36 eV. The resulted two O_vs are separated by a surface O[2] atom (state *i*). The Zn[1] atom can migrate to the top of surface Cr atom with the formation of Zn-O-Zn structural pattern (state *ii*). This Zn migration needs to overcome the energy barrier of 1.00 eV and the reaction energy is 0.34 eV. Then, the separator O[2] atom migrates to fill O_v, exposing four interconnected [CrO₅] structural pattern (state *iii*). The migration barrier and reaction energy are 0.23 eV and -1.08 eV. The final obtained surface structure with O_v agglomeration is 0.74 eV more stable than that with isolated O_v's, indicating the thermodynamic preference of O_v agglomeration.

Figure S3. The energy profile of bulk Zn migration. The green, dark blue and red represent the Zn, Cr and O atoms, respectively.

The Zn migration in bulk is much easier with the migration barrier of only 0.75 eV.

Figure S4. The surface structure after 2 ns MD-NN simulation at 673 K.

Figure S5. The structure after 2 ns MD-NN simulation at 873 K from side view.