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ABSTRACT: The high dimensional machine learning potential (MLP) that has developed rapidly in the past decade represents a
giant step forward in large-scale atomic simulation for complex systems. The long-range interaction and the poor description of
chemical reactions are typical problems of high dimensional MLP, which are mainly caused by the poor structure discrimination of
the atom-centered ML model. Herein, we propose a low-cost neural-network-based MLP architecture for fitting global potential
energy surface data, namely, G-MBNN, that can offer improved energy and force resolution on a complex potential energy surface.
In G-MBNN, a set of many-body energy terms based on the local atomic environment are explicitly included in computing the total
energy�the total energy of the system is written as the sum of atomic energy and many-body energy contributions. These extra
many-body energy terms are computationally low-cost and, importantly, can provide easy access to delicate energy terms in complex
systems such as very short repulsion, long-range attractions, and sensitive angular-dependent covalent interactions. We implement G-
MBNN in the LASP code and demonstrate the improved accuracy of the new framework in representative systems, including
ternary-element energy materials LiCoOx, TiO2 with defects, and a series of organic reactions.

1. INTRODUCTION
The past few years have seen tremendous progress in the use of
machine learning (ML) potentials for accelerating atomic
simulations for systems with complex potential energy surface
(PES).1−3 The atom-centered ML potential (AC-MLP) is a
common approach, as introduced in the high-dimensional
neural network (HDNN) by Behler and Parrinello,4 which
decomposes the total energy as a sum of local, environment-
dependent atomic energies (E = ∑i=1

n Ei). Following this
principle, a variety of ML potential recipes, such as ANI,5

LASP,6,7 GAP,8,9 and message-passing networks,10−14 are
successfully developed that differ mainly in how the local
atomic environments are represented. These HD MLPs utilize
atom-centered descriptors and aim to describe the complex
PES of hundreds to millions of atoms, being different from the
earlier MLP used in studying full reaction trajectories of
molecular systems (several to tens of atoms) that takes
permutationally invariant polynomials of molecular coordinate
as descriptors.15−17 Comparatively, the less accurate descrip-
tion of long-range (electrostatic) interactions and high-energy
structures (such as reaction transition state, TS) are two often
referred problems in HD MLPs, although the addition of

global PES data can reduce the error.18 How to improve the
transferability of the AC-MLP, particularly with a small data
set, is an intriguing but challenging task in developing the next
generation of MLPs.
One obvious solution to improve the transferability of MLP

is to design better input vectors, the so-called structure
descriptors, to distinguish tiny structural changes between
structures. While the descriptors used in HDNN are relatively
simple, being the sums of two- or three-body functions
composed by Gaussian-type functions of pairwise distances
and triagonal functions,4,19 the incorporation of more complex
function forms, such as the spherical harmonics, dihedral
angles, and power functions (SOAP,9 ANI,5 and PTSD7), does
appear to improve the MLP performance. As the direct sums of
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two-body functions reduce the resolution on individual
pairwise interactions, the Deep potential proposed to construct
descriptors using the trainable transformation matrix acting on
pairwise distances.14 Similarly, graph convolution network
methods were also applied to automatically extract structural
information via trainable network parameters.10−12 In general,
these efforts on atomic descriptors are however limited by the
cutoff range to the central atom, which is often below a few
(e.g., 6−7) angstroms due to the rapid increase of computa-
tional cost in computing the long-range many-body descrip-
tors.
Another important direction to construct MLP is to

introduce new energy decomposition schemes with physically
meaningful terms. In particular, considering that the long-range
interaction should be of an electrostatic nature, recent years
have seen great interests to retrieve the explicit electrostatic
interaction20−24 by exploiting the atomic charge, which can be
computed from DFT (e.g., the Hirshfeld charges via the
charge-localization scheme).22 The atomic charge, strictly
speaking, is however a nonlocal function due to the possibility
of long-range charge transfer, and thus its prediction via ML,
even with the reference atomic charges in the training set, is
challenging with only local position quantities. For example,
Goedecker et al. proposed a charge equilibration NN
technique,21 which utilized the empirical electronegativities
based on the local environment to learn the atomic charge
from DFT calculations. One step further, the Becke Population
Neural Network (BpopNN) method23 incorporates electronic
populations obtained via the constrained DFT method in
learning MLP and the MLP input vectors explicitly contain
population variables. Since the training data in BpopNN are
not from standard DFT calculations, the applications applied
to complex material systems are limited. Overall, these atomic
charge prediction methods are generally computationally
expensive and not ideal for complex material systems with
large PES data sets for learning.
Following our previous contributions on global NN (G-NN)

potential7 and LASP program (large-scale atomic simulation
with a neural network potential, LASP 3.0),25,26 here, we
propose a low-cost NN-based MLP architecture that can offer
much-improved resolution on complex PES, where many-body
energy terms based on the local atomic environment are
explicitly included in computing total energy. These extra
many-body energy terms are computationally low-cost and,
importantly, can provide easy access to delicate short- and
long-range energy terms in complex systems, such as the very-
short repulsion, long-range attractions, and sensitive angular-
dependent covalent bondings. We implement the method in
our LASP code and demonstrate the improved accuracy of the
new framework in a few representative systems, including
ternary energy materials, oxides with defects, and organic
reactions.

2. METHODS
2.1. Physically Meaningful Terms in Force Fields and

G-NN Potential. The purpose of MLP is very much similar to
the classical force field developed since 1950s in the past
century, aiming for a fast evaluation of PES. The energy
decomposition scheme in AC-MLP does follow the idea of the
embedded atom method, a general force field method designed
to describe alloys,27 which considers the total energy as the
sum of atomic energies and the atomic energy is a function of
the local electron density of the embedded atom in the

environment. The force field methods, while being physically
meaningful, are difficult to generalize to treat all material
systems due to the diverse nature of atom−atom interactions
and the limited parameter space in fitting the PES. On the
other hand, the AC-MLP connection between the atomic
coordinate and the atomic energy lacks clear physically
meaningful terms and is basically numerical by learning the
training data set from quantum mechanics calculations using a
huge parameter space. This could lead to poor transferability in
MLP, for example, to predict the structures in the PES regions
with low training data density.
On the other hand, apart from the atomic energy scheme,

another common approach in the classical force field is to
decompose the total energy into many-body terms, such as
two-body (bond), three-body (angle), and four-body (dihedral
angle) terms. For example, a general two-body term can be
expressed as

E f r a r n( ; , , )ij 0= (1)

where rij is the atom pair distance; a and r0 are optional
parameters related to the pair for distinguishing different
elemental types, bond order, and the equilibrium distance; n is
the parameter describing the decay behavior between the atom
pair, which is physically interpretable, for example, in
electrostatic interaction n = 1, in dipole−dipole interaction n
= 3 and in van der Waals interaction n = 6. The reason that
AC-MLP does not utilize the many-body energy decom-
position scheme lies in the fact that the number of many-body
terms increases rapidly with the increase of system size�it is
practically impossible for MLP to connect position coordinates
with each many-body term in complex systems.
Instead, the MLP envelops all structure information in the

structure descriptors, which are, strictly speaking, pure
numerical functions satisfying the translation, rotation, and
permutation invariance of structure as required for describing
PES. Taking the G-NN potential as an example, the power-
type structure descriptors (PTSD) are utilized as the input,
which is a set of highly sophisticated functions, and designed to
be compatible with the SSW global optimization data set. In
PTSD, not only the traditional two-body (S1−S2) and three-
body (S3−S5) terms are available but also the four-body terms
(S6) are implemented and the spherical functions are
introduced to enhance the structure discrimination. The
formulas of S2 and S5 are given below, where the combination
of the power function and spherical harmonic function, similar
to atomic wave functions, provides a convenient way to couple
the radial and the angular information on atom.
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In the equations, rij is the internuclear distance between
atom i and j, and θijk is the angle centered at i atom with j and k
being neighbors (i, j, and k are atom indices). The key
ingredients in PTSD are the cutoff function fc that decays to
zero beyond the rc (eq 2), power-type radial function,
trigonometric angular functions, and spherical harmonic
function. It should be noted that the terms of the PTSD will
increase rapidly as cutoff rc becomes larger.
2.2. MBNN Architecture. To overcome the drawbacks in

AC-MLP, in this work, we propose a new MLP architecture,
namely, the many-body-function corrected global neural
network (G-MBNN) as a replacement to the G-NN potential
utilized for fast global PES exploration.28 In G-MBNN, the
total energy is expressed as the sum of both the atomic
energies and many-body functions. G-MBNN is also targeted
to learn global PES data sets generated by stochastic surface
walking (SSW) global optimization, which involves highly
complex atomic environments and multiple chemical compo-
sitions and element combinations. The parameters in these
many-body functions are learned from local atomic environ-
ments via machine learning. The G-MBNN is implemented in
our large-scale atomic simulation with a neural network
potential (LASP) program by using the power-type-structure
descriptors (PTSD) to distinguish structures and the SSW
global PES data set for training. More than 100 MBNN
potentials are now available for describing complex PES
systems covering more than 50 different elements (http://
www.lasphub.com/#/lasp/nnLibrary). In the following, we
elaborate on the MBNN architecture and provide benchmarks
for treating different PES problems.
Figure 1 illustrates how the total energy is derived from a

molecular structure by using the G-MBNN framework. Two
different implementations of G-MBNN, a single feed-forward
neural network (FFNN) version and a double FFNNs version,

are illustrated in Figure 1B, which differ in how the parameters
in MB functions are yielded from NNs.
As shown in Figure 1A, for each atom in a molecule, a set of

PTSD functions7,25 {Di} are calculated from the Cartesian
coordinates {Ri}. These functions describe the local chemical
environment of each atom and are used as input for atomic
neural networks. Unlike standard G-NN, which output only a
single value as the atomic energy, the G-MBNN outputs a
vector, including the atomic energy contribution εi

0, a one-
body function ( fs), and a series of coefficients εi

k (k = 1, 2, ...)
for building different many-body functions, namely, fd, f t, and fq
for the two-body, three-body, and four-body functions,
respectively. As shown in eq 6, the total energy Etot of the
system can thus be expressed as a sum of the atomic energy
contributions ( fs) and the many-body functions ( fd, f t, ...). The
double FFNN implementation, different from the single FFNN
with all εi come from the same network (Figure 1 upper),
yields εi

0 and εi
k in separated networks (Figure 1B lower).
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These many-body functions can be written into general
function forms shown in eqs 7−13, as implemented in LASP
program, where εi

k from NN acts as the parameters. In these
functions, rij is the distance between atoms i and j and θijk is the
angle centered at the i atom with neighbors j and k (i, j, and k
are atom indices); na is the total atom number of the system;
ns, nd, and nc are the number of one-body, two-body, three-
body function in MBNN architecture, respectively (s, d, and t
are function indices); λ, md, mt, lt, and lq is adjustable
parameters of these functions. The fc in all of the equations is
the cutoff function with the cutoff radius rcut and the adjustable
parameter α and β, as defined in eq 14 (the cutoff function in
MBNN functions can be different from that in PTSD as shown
in eq 2). These functional forms with adjustable parameters

Figure 1. Illustration of the architecture of MBNN. (A) Each atomic ML model (NN utilized in this work) outputs a series of coefficients εi
k, which

act as the parameters for different many-body functions. The total energy of the system is written as the sum of many-body functions. (B) Two
different implementations of the ML model based on feed-forward NN. Single net: one single NN outputs all coefficients; double net: two separate
NNs output the εi

0 and εi
k (k > 0) coefficients.
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allow NN to quickly identify physical interactions that can
satisfy the designed function relation. In principle, a shorter
cutoff and larger m in eq 8 describe the (very) short
interactions (e.g., Pauli repulsion), while a longer cutoff and
smaller m functions are designed to improve the long
interaction (e.g., electrostatic origin).
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In the MBNN architecture, the atomic force is analytically
derived based on eq 6, where the force component Fu acting on
the atom u is the derivative of the total energy with respect to
its coordinate vector ru that is further related to the derivatives
to the atomic coefficients εi

k and the pairwise distance riu. For
illustration, we explain how the force Fu can be calculated for
the one-body (eq 7) and two-body (eq 8) functions in the
following, as shown in eq 15.
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We define the following term in eq 16 for simplicity.
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Substituting eqs 8 and 9 with eq 15, we obtain eq 17
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In eq 17, the derivatives of εi
s and εi

d with respect to the
atomic positions in the first two terms are determined by the
NN back-propagation, and the third term, the direct force of
the two-body function, is nonzero only if rij is related to u.
Finally, eq 17 can be further derived by inserting the input
PTSD functions {Di} as eq 18. In the MBNN framework, all
forces and stresses can be obtained analytically and together
with the total energy, all the quantities are trained
simultaneously in LASP. It is important to note that as derived
in eq 18, the computational cost for the derivative calculation

of the descriptor to the atom (
rD
Di

d

i

i

u
) does not increase with

respect to the increase of the cutoff of MB functions. This has a
great benefit in computation speed since the derivative-related
computation becomes a dominant expense with the increase of
the PTSD cutoff radius and the number of PTSDs encountered
in complex material systems. As a result, the extra cost in G-
MBNN computation is generally low (e.g., 10−20%), which is
governed by the MB function cutoff and the number of MB
functions. In practice, we can reduce the cutoff of relatively
expensive PTSD functions and enlarge the cutoff of MB
functions to balance accuracy and efficiency.
Apart from the low computational costs, we may emphasize

two key advantages of G-MBNN. First, the MB functions
provide explicit functional forms to fit complex PES, which can
help to describe sharp energy variation due to small local
structural changes. The large Pauli repulsion with a very short
atom−atom distance is a case. More importantly, for some
molecular chemical reactions, it also happens that the local
bond breaking/making causes a violent change in energy,
leading to a sharp transition state. While the specific MLP
using permutationally invariant polynomials of molecular
coordinate as descriptors can well describe such difficult
reaction profiles,15−17 in our applications of HD AC-MLP we
found that the structural descriptors in the summation forms
(e.g., PTSD), although satisfy the translation, rotation, and
exchange invariance requirements of descriptors, sacrifice the
high resolution to tiny structural changes and is often less
accurate at the transition state regions than the initial state
region, particular when the global PES data set is utilized for
fitting the MLP. Instead of the direct approach to augment the
training data set with a set of closely related configurations to
capture the specific PES characteristic, the MB functions
incorporating the individual pairwise distance, the energy and
gradient contributions to the target atom pairs can be learned
readily to produce large energy fluctuations due to a local
structural change.
Second, the MB functions enhance the long-range coupling

between atoms, and thus, the long-range interactions exceeding
the cutoff radius of atom-centered descriptors can be better
described. The ionic solids with low-concentration defects
represent such an example, where the distance between defects
can easily exceed 10 Å and thus are not directly visible to
structure descriptors. To allow the defects to see each other,
one may have to increase the cutoff of descriptors, which,
however, will heavily hamper the MLP speed. Instead, MB
functions can be designed to allow such interactions to
contribute explicitly to the total energy, which should be
reflected by the change in coefficient ε of atoms near the defect
site.
It might be mentioned that our G-MBNN potential is

different from the linear atomic cluster expansion (ACE) force
field recently proposed by Kovaćs et al.29 both in the descriptor
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and the nonlinearity of the function forms, although both
approaches construct the MB functions to describe the total
energy. The ACE force field is proposed to fit the MD data set
of small organic molecules (without periodicity). It generalizes
the power spectrum (also known as the SOAP) descriptor, a
two-body density function (one-particle basis), to an arbitrary
body order for describing the atomic chemical environment. In
addition, the ACE force field is linear with respect to the fitting
parameters which are the coefficients of many-body terms. As
illustrated below, G-MBNN will be applied to the global PES
problems of complex material systems with and without
periodicity. In G-MBNN, more complex PTSDs are utilized as
the atomic descriptor, which by themselves contain up to four-
body terms (e.g., S6) to account for the complex atomic
environment. Furthermore, the nonlinear NN is utilized to
generate each atomic parameter in MB expansions (eqs 7−14),
which is numerically more complex and flexible and thus offers
a power solution to complex PES problems in general.

3. RESULTS AND DISCUSSION
Below we present the performance of the G-MBNN potential
on a variety of systems including metal oxides and covalent
organic molecules. By comparing the results from standard G-
NN potential and DFT calculation results, we show that the G-
MBNN method generally offers a better description for
complex material and molecular PES, featuring a shortened
training time and improved accuracy on long-range interaction
and chemical reactions.
All data set for fitting NN potential in this work is generated

by first-principles periodic DFT calculations with plane wave
basis set as implemented in VASP package.30,31 The projector
augmented wave (PAW) pseudopotential is utilized to describe
the ionic core electrons. The electron exchange and correlation
effects are described by the GGA-PBE functional. The kinetic
energy cutoff for plane wave basis is 450 eV and the fully
automatic Monkhorst−Pack k-mesh grid is generated with 25
times the reciprocal lattice vectors.
3.1. Training Accuracy. Taking the ternary-element

energy material system LiCoO as an example, we illustrate
the efficiency of G-MBNN by comparing four different NN
architectures at comparable parameter sizes. In constructing
the NN potential, we utilize the same size of input layers, i.e.,
338 PTSDs for each element, and only consider two-body

radial functions fd1 in MBNN for clarity, as described in eq 8,
where the rcut is set as 16.0 Å and md = 3. These NN
frameworks are detailed as follows.

3.1.1. mb_2net. Two separate NNs with three hidden
layers, i.e., 338-144-80-80-1 nodes and 338-80-80-80-1 nodes,
respectively. The numbers 144, 80, and 80 are hidden layer
neuron numbers and the two outputs from two network are
the atomic energy contribution εi

1 and two-body function
parameter εi

2, respectively.
3.1.2. mb_1net. One net with three hidden layers (338-178-

144-144-2) with the output being atomic energy contribution
εi
1 together with two-body function parameter εi

2.
3.1.3. std_2net. In analogy to mb_2net, two standard

networks (338-144-80-80-1 nodes and 338-80-80-80-1 nodes,
respectively) are utilized to obtain the atomic energy Ei by
summing up two outputs (εi

1, εi
2) of the networks, i.e., εi = εi

1

+ εi
2.
3.1.4. std_1net. In analogy to mb_1net, one standard

network (338-178-144-144-1) is utilized to generate the
atomic energy.
By using SSW global optimization32 and the standard

iterative self-learning procedure,6,7 we first generate a global
data set of LiCoO system, which contains 11,008 distinct
structures that vary in morphology (clusters, layer, and bulk
structures) and chemical composition (Li, CoOx, LiCoOx), as
detailed in Table S1. This data set is recently utilized for
training a G-MBNN potential for describing the Li ion
dynamics in CoO2 material.

33

The four NN frameworks are then utilized to train the global
LiCoO data set. The learning curves using BFGS optimizer34,35

are plotted in Figure 2. It can be seen that although the
architectures are different, the NN with MB function
corrections (mb_2net and mb_1net) generally improve the
training speed and accuracy compared to the architectures
without MB corrections (std_2net and std_1net). Specifically,
in 5000 epochs, the root-mean-square error (RMSE) of energy
and force of mb_1net could reach 7.9 meV/atom and 0.253
eV/Å, while the RMSE of energy and force of std_1net are
higher, being 8.8 meV/atom and 0.263 eV/Å. As shown in
Figure 2, mb_1net reaches the same accuracy level with 30%
fewer epochs (3700 vs 5000) compared to std_1net and the
training cost for each epoch increases by ∼10%. As a result,
MBNN improves the training speed greatly and achieves
higher accuracy.

Figure 2. Learning curve for four different MLPs in training LiCoO global PES data set.
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In addition, by comparing the performance of mb_2net and
mb_1net, we found that single-network G-MBNN performs
better. Although the energy error in mb_2net drops faster
initially, mb_1net catches up after 4000 epochs. Furthermore,
after 5000 epochs, mb_1net has a better performance in the
force fitting (RMSE 0.253 eV/Å), compared to that (0.256
eV/Å) in mb_2net. Since two MBNN potentials have
comparable parameter space, the better performance of
mb_1net could be attributed to the coupling of NN
parameters in outputting multiple targets. A single fully
connected network helps to slowly convolute the parameter
space and transform the structural information into multiple
target outputs.
3.2. Long-Range Interaction. Taking the ionic crystal

TiO system as the example, below we will show that the
explicit long-range two-body fd can markedly improve the
description of long-range interaction. The presence of defective
sites (e.g., oxygen vacancies, dislocations) in the TiO2 system is
of great significance to the material properties and catalytic
performance.6 The interaction range between these low-
concentration defected sites is generally far beyond the cutoff
radius (6−7 Å) of structure descriptors, and the defected TiO2
systems are the typical examples that are difficult to describe
accurately using the standard AC-MLP framework.
Our TiO global PES database has 27279 structures,

containing different chemical compositions (Ti, TiOx). The
database is a subdatabase of Ti−O−H global PES data set
utilized previously for identifying new TiO2 crystal phases
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and exploring the catalytic reactions. For comparison, four NN
potentials with a similar parameter space are trained on the
same TiO database. They are described as follows and the
network parameters are listed in Table 1.

(i) standard G-NN potential without MB corrections (std)
with the network architecture 173-144-80-80-1;

(ii) 1-net MBNN potential (mb1) with one additional short-
range MB function fd1 (m = 4, rcut = 7 Å) and a network
architecture of 173-144-80-80-2.

(iii) 1-net MBNN potential (mb2) with one additional long-
range MB function fd1 (m = 4, rcut = 15 Å) and a network
architecture of 173-144-80-80-2.

(iv) 1-net MBNN potential (mb3) with four many-body
functions (short-range fd1, long-range fd1, and two three-
body MB functions f t1, f t2) and a network architecture of
173-144-80-80-5.

After 10000 epoch training, the RMSE of energy and force
of std, mb1, mb2, and mb3 are 5.97 meV/atom, 0.140 eV/Å;
5.73 meV/atom, 0.133 eV/Å; 5.80 meV/atom, 0.133 eV/Å;
and 5.76 meV/atom, 0.132 eV/Å, respectively (the details of
the learning curve are shown in Figure S1). Consistent with the
previous results for LiCoO, three G-MBNN of TiO all achieve

an accuracy higher than that of the standard G-NN potential.
Among three G-MBNN, the mb1 and mb3 are better in the
energy fitting, suggesting the presence of the short-range MB
correction fd1 is critical for improving the overall accuracy of
the PES.
To examine the transferability of the MLP in describing the

long-range interactions, we design two large TiO2 systems with
low concentrations of defects, as shown in Figure 3A, both

originating from a rutile crystal bulk [192 atoms, p(2*4*4)].
The first one deletes two O atoms (two O vacancies) and the
second one deletes one Ti atom (Ti vacancy) per supercell.
The defect−defect distances are indicated in the figure. In our
comparison, the two structures and the corresponding pristine
rutile structure are fully optimized using the four NN
potentials and DFT calculations. The energy difference
between the defect structures and the pristine structure, i.e.,
the energy cost to create the defects, are thus obtained from
different potentials/methods, and the results are shown in
Figure 3B.

Table 1. MB Function Parameters in Different G-MBNNa

MLP MB terms rcut (Å) md/mt lt
mb1 fd1 7 4
mb2 fd1 15 4
mb3 fd1 15 3

fd1 3 6
f t1 4.5 1 2
f t2 4.5 1 2

aThe maximum PTSD cutoff is 7 Å for all NN potentials.

Figure 3. MBNN performance for predicting defects formation. The
benchmark of MLP with DFT results for two TiO2(rutile) structures
with defects. The positions of the atomic defects are marked with a
hollow circle. Red: O, blue: Ti. ΔΔE is the comparison of NN
calculated vacancy formation energy ΔE with respect to DFT
calculations.
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Figure 3B shows that the long-range MB correction
effectively improves the prediction of structures with long-
range charge transfer, as reflected by the better accuracy of
mb2 than std. Furthermore, the comparison between mb1 and
mb2 indicates that the improvement is not simply due to an
overall increase in accuracy but is specifically related to the
long-range description. Although the introduction of short-
range MB corrections in mb1 also improves the overall
performance of the training, it does not improve the prediction
of these two defective structures. Interestingly, the mb3
potential with multiple MB corrections does provide the best
performance, suggesting the beneficial coupling between
different MB correction terms.
We may understand the results in Figure 3 as follows. In

defective structures, the presence of the vacancies for the P-
termini changes not only the local electron density but also the
charge density at the conduction band minimum and the
valence band maximum, which are of a long-range nature. The
standard AC-MLP cannot decompose these defect-related
interactions among all atoms properly due to the cutoff range
of the local environment. As a result, atoms that are distal to
the defects are slow to respond and thus are underestimated in
energy (the long-range electrostatic interaction is erroneously
reduced in defective systems). In contrast, the long-range MB
functions allow atoms to “see” directly the long-range defects
and respond quickly in energy and force.
3.3. Reaction Prediction. The high-energy regions on

PES are inevitably less visited during PES exploration owing to
both the Boltzmann law and the rapid expansion of the
configurational space on going up in energy. For investigating
chemical reactions, this could lead to a severe problem for
MLP to predict reaction kinetics since the reaction barrier can
be poorly described when the accuracy in describing the initial
and transition states is inconsistent. To address this issue, one
possible approach is to develop a specified MLP for the target
reaction. In such an approach, the data set is expanded to
include as many as possible data points that cover the entire
reaction. For example, Rivero et al. has shown that around
200,000 structures are required to train a MLP to reproduce a

single Diels−Alder reaction between 2,3-dibromo-1,3-buta-
diene and maleic anhydride.37 Obviously, the number of data
points required to accurately describe a specific reaction can be
so large that it is not feasible for general-purpose reaction
prediction for unknown reactions. In general, it is a key
challenge to train a robust MLP for predicting reaction
energetics with relatively fewer data points on PES as practiced
in our group using SSW global PES sampling.38 Below we will
show that the introduction of MB corrections does improve
MLP in predicting the reaction transition regions using the
Claisen rearrangement reaction of allyl vinyl ether to 4-
pentenal as the example.
Figure 4A shows two data sets, each with 10,000 structures

collected from our SSW and MD simulations (500 K),
respectively, projected onto a two-dimensional surface defined
by C−O distance (distance between C3 and O1, inset in
Figure 4A) and C−C distance (distance between C1 and C5).
It is obvious that the SSW trajectory (red) is much more
effective in generating reactive data than MD data (black),
although the transition state region data are still much less
populated compared to the minima regions. It is worth
mentioning that no further biased data selection is
implemented to better sample the Claisen reaction since the
purpose of this example is to illustrate the performance of MLP
in a typical situation of global PES exploration, where in a
global PES data set the transition state region data is often
much less in density.39

We then trained the MLP for the MD data set and the SSW
data set. Not surprisingly, the MLP trained from the MD data
set cannot be utilized for predicting the reaction due to the
complete lack of reaction data in the MD data set�the
transition state search fails, suggesting a poor definition of the
reaction PES. For MLPs trained based on the SSW data set,
the standard NN potential utilizes a network size 291-64-86-1
and the MBNN potential has the equivalent network size of
291-64-64-23 with additional 22 many-body functions [13
two-body, 6 three-body, and 3 four-body functions (see Table
S3 for many-body function details)]. Apparently, a large
number of many-body functions are required to provide the

Figure 4. MBNN performance for predicting Claisen reaction. (A) The data points are distributed from MD simulations and from SSW global
search. The points along the reaction channel from DFT calculations are indicated for illustrating the initial (IS), transition (TS), and final state
(FS) regions. (B) The benchmark was 31 structures along the reaction channel using MBNN (mb) and standard NN potentials (std). The black
dots are the DFT relative energetics (left y-axis) of the structures along the reaction channel, and the bars are the corresponding errors (right y-axis)
of two NN potentials to DFT calculations.
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best extrapolation to the transition state region since the
training data set population for the transition state (higher
energy, low data density) and the minima region (lower
energy, high data density) is about 500 and 9500, respectively.
The performances of two MLPs are then compared by

evaluating the pathway of the Claisen reaction. The results are
shown in Figure 4B, which utilize 31 structures from DFT
calculations along the reaction channel as the benchmark. The
MAE of standard NN and MBNN are 2.58 and 1.42 meV/
atom, and the RMSE are 4.65 and 2.11 meV/atom,
respectively (see Table S4). Obviously, the overall accuracy
in energy of MBNN is significantly improved, particularly in
the transition state region of the reaction (data point 14−20)
compared to standard NN, where the RMSE of standard NN is
8.62 meV/atom and MBNN is 3.40 meV/atom. In addition,
the force prediction is also generally better in the mb-SSW
potential. We note that the larger error at the transition state
region compared to the minima region, particular for the
standard NN, is expected due to the low data density at the
transition state. The same phenomenon was also observed in
previous works.2,38

To illustrate the general improvement of G-MBNN in
activity prediction for a wide range of reactions, we further
generated a C−H−O three-element G-MBNN potential and
compared its performance with the standard G-NN potential.
The training data set used in fitting the MLPs is a subset of
global PES data taken from our previous work38,40 in exploring
the full reaction network of glucose pyrolysis, which contains
53,727 structures with up to C−H−O three elements (the data
set is openly available41). These structures were collected from
SSW global optimization trajectories of QM9 molecules and
glucose38 with and without periodic boundary conditions. The
network architecture of standard G-NN and G-MBNN has the
equivalent network size, being 345-64-86-1 and 345-64-78-8,
respectively, where G-MBNN has an additional 7 many-body
functions (3 two-body, 3 three-body, and 1 four-body
functions).

The performances of G-MBNN and standard G-NN in
predicting the barriers of 22 organic reactions are shown in
Figure 5, where the barriers are compared with the DFT
calculation results. These reactions are the forward and
backward reactions of 11 distinct reactions as listed in Figure
5 (all data are detailed in Table S5), which are taken from the
Baker test system and glucose decomposition.42,43 As shown in
Figure 5, the G-MBNN outperforms standard G-NN with the
average and maximum errors in the barrier being 0.05 and 0.14
eV, respectively, being significantly smaller than the corre-
sponding errors of 0.09 and 0.38 eV obtained from standard G-
NN potential. This confirms the better extrapolation of the G-
MBNN potential to the transition state region of PES and thus
provides higher accuracy for chemical reactions. It should be
noted that the comparison here is based on the same, relatively
small parameter space�when the network size increases, we
observe that the difference in predicting the barriers between
G-MBNN and standard G-NN becomes smaller, although G-
MBNN is consistently better than standard NN.

4. CONCLUSIONS
This work develops a new MLP architecture (G-MBNN) by
incorporating explicit MB corrections in the derivation of the
total energy. A set of two-body, three-body, and four-body MB
functions are proposed as the MB functions, where the
parameters are the output of atom-centered NN. Compared to
the traditional atom-centered MLP, the G-MBNN provides an
easy access framework to delicate energy terms between
particular atoms, such as very short repulsion, long-range
attraction, and angle-dependent covalent interactions. The G-
MBNN is targeted to fit the global PES data set obtained from
SSW global PES sampling, the same as the G-NN potential
utilized in our previous work. By testing on a range of complex
PES systems, we demonstrate that the G-MBNN potentials
generally improve on the fitting speed, the description of long-
range interactions, and a better description of chemical bond
making/breaking. We emphasize that the G-MBNN architec-

Figure 5.MBNN (mb) performance for predicting the reaction barrier of 22 organic reactions in comparison with that of standard NN (std). The
names of the reactions are inserted in the graph, where (f) and (b) indicate the forward and backward reaction, respectively. The reactions are
ranked by the error of the MBNN results with respect to the DFT results. The value and maximum value of the error of MBNN and standard NN
potential are inserted.
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ture offers a flexible ML framework, not only for energy and
force (extensive property) prediction in MLP but also for
intensive properties predictions, which can be done by
modifying the MB function forms. The potential of the
MBNN architecture for property predictions will be explored
in our coming works.
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