
1 

Reaction Design from Artificial Intelligence Guided Potential Energy 
Surface Exploration: Suzuki Coupling from Theory to Experiment 

Zi-Xing Guo1, Jin-Peng Tang1, Zhen-Xiong Wang1, Qi-Ming Liang1, Si-Cong Ma2, Cheng Shang1, 

Lin Chen1*, Zhi-Pan Liu1,2* 
1Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and 
Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 
200433, China 
2Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic 
Chemistry, Chinese Academy of Sciences, Shanghai 200032, China 
 
Abstract 
       Reaction design from first principles has been a grand challenge in chemistry. Here we develop a theoretical framework to explore 
uncharted chemical reaction space, which relies on a general diffusion generative model (DGM) to generate three-dimension structure 
of reaction intermediates and transition states, and global neural network potential calculations for fast potential energy surface 
optimization. A high-order pair-reduced equivalent massage passing neural network model is developed to meet the general 
(elements ≤ 86) and high precision (<0.05 Å) purpose of DGM, which can distinguish sensitively elements, bonds and the spatial 
arrangement of atoms. By bootstrapped training over 437,952 molecule datasets, including drug-like molecules and metal-containing 
complexes (especially Pd-phosphine), our DGM can now be utilized for molecule structure generation in general (accessible from 
www.laspai.com). Taking a challenging Suzuki-Miyaura coupling reaction with a chunky reactant as the target, we generate the 
complete reaction profile of the catalytic reaction for 81 different Pd-P catalysts. By using the reaction kinetics data as descriptors, we 
screen the high activity ligands and perform synthetic experiments to verify theoretical prediction, which leads to the identification of 
a new ligand that reaches 81.1 % reaction yield. This work establishes a new paradigm of reaction design by a fast, high precision 
reaction pathway generation from 2D graph.  
 
1. Introduction 

It has been a long history for human beings in developing 
understanding of chemical reactions and further the ability to 
identify reaction rules.1–3 To design reaction, a major challenge 
is to establish a quantitative structure-activity relationship, 
which requires an efficient exploration of the vast reaction 
space containing reactants and catalysts, if present.4–7 In 
transition-metal-catalyzed organic reactions, the cornerstone of 
modern chemical synthesis, this difficulty is manifested in the 
rich variables relating to auxiliary ligands, metal species and 
reactant types, which are prohibitively expensive to enumerate 
via both experiment and first principles calculations.8–11 Instead, 
reaction design via descriptor engineering has been pursued in 
recent years12–15 and many descriptors16,17, such as buried 
volume18–20, bite angle21–23, Tolman electronic parameter24 and 
ligand replacement energy25 were proposed to envelop the 
parameter space of reaction into simply accessible quantities. 
These designed descriptors, while being informative, are often 
reaction-dependent and lack of clear physical interpretation in 
the context of reaction kinetics. For a general-purpose reaction 
design, better approaches are desirable that can be applied to 
different reaction data with good model transferability, and 
ideally, be rooted rigorously in kinetics theory.  

In order to establish a robust structure-activity relationship, it 
is essential to equip with high-quality rection data. Compared to 
traditional approaches to accumulate reaction data via either 
experimental synthesis or first principles calculations, deep 
generative models emerged in recent years offered a fast and 
cost-effective route.26–31 By learning available three-
dimensional (3D) structure databases with known atom 
composition and bond connectivity, these models as 
represented by GeoDiff based on Diffusion-based stochastic 
denoising framework, more generally, diffusion generative 
model (DGM), can achieve fast 3D structure generation32–36 
from two-dimensional (2D) molecular graph, outperforming 

traditional methods that rely heavily on empirical 
parametrization and semi-empirical approximations.37–39 
Specifically, GeoDiff algorithm can achieve the mean root-mean-
square-error (RMSE) of structure with 0.863 Å and 0.209 Å on 
GEOM-DRUG and GEOM-QM9 datasets, which primarily focus 
on conformation of small to medium-sized organic molecules 
(typically below 40 atoms) with only C, H, O, and N elements. 
However, due to the shortage of 3D structures from literature, 
there is no DGM available for complex chemical systems, 
particularly those with transition-metal elements. For transition 
metal-catalyzed organic reactions, the current theoretical 
datasets, such as CATCO group's curated database of >400 
transition metal pathways (spanning 12 metals from Ti to 
Hg)26,40 and Gensch et al. compiled dataset containing 1,558 
monodentate phosphine structures and their Ni(CO)₃-bound 
forms15, are either limited in the ligand diversity (e.g., type and 
conformation) or in the metal diversity, which is mainly due to 
the high computational costs of first principles calculations to 
explore the huge reaction space. 

Even if the reactant/product is available, common diffusion-
based stochastic denoising framework still meets difficulty in 
predicting the transition state (TS) of complex reactions. This is 
because common DGMs typically utilize a sophisticated dual-
encoder architecture32,34: a SchNet as the spatial encoder for 
unconditional geometric modeling and a Graph Isomorphism 
Network (GIN)41 message passing for processing graph-
conditioned structural data, where the TS information is not 
present explicitly. Beyond the GeoDiff model, the OA-ReactDiff 
model utilizes a SE(3) equivariant neural network (LEFTNet) on 
fully connected graph containing initial state (IS), TS and final 
state (FS) structures during vector space construction, learning 
the Transition1x database, which contains 11,961 gas-phase 
organic reactions (limited to H, C, O, and N elements with 
maximum 7 heavy atoms)42, and achieves a mean RMSE of 0.183 
Å for generating the TS structure for 1,073 test elementary 
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reactions. This framework, however, encounters scalability 
bottlenecks when handling large systems (e.g., greater than 100 
atoms) due to the O(n2) computational complexity of full 
connected graphs.  

 Here we develop a BDGM-PES method, acronym for 
Bootstrapping Diffusion Generative Model coupled with 
Potential Energy Surface (PES) exploration, which is a 
computational framework for exploring chemical spaces of 
reaction through an automated self-regressive pipeline. BDGM-
PES utilizes a DGM to generate 3D structures of reaction 
intermediates and TSs directly from their 2D molecular graphs. 
This capability leverages a high-order pair-reduced neural 
network incorporating edge and time information (HPNN-ET), 
which facilitates the generation of large molecules (>100 atoms) 
with atomic-level precision (RMSE < 0.05 Å) at remarkable 
efficiency. Furthermore, BDGM-PES incorporates our group's 
global neural network potential (G-NN) and a single-ended TS 
searching algorithm to fast explore the PES43,44. Taking Pd-
catalyzed Suzuki-Miyaura reaction45,46 as the target system, we 
systematically generated 3.7 million conformations of 96,000+ 
organic molecules (avg. 96.6 atoms) across 
Pd/P/C/H/O/N/Cl/Br/B/K ten elements using BDGM-PES 
method. Using the trained DGM model, we obtained complete 
pathways for 81 different ligands, from which the high catalytic 
activity of ligands is screened out using the descriptors directly 
from the reaction profile and then confirmed by experiment. 
This work establishes a paradigm for automated large-scale 
structural exploration, pathway construction, and activity 
prediction in transition metal catalysis. 

 
2. PdP5 dataset  

Before we introduce BDGM-PES method, we summarize the 
PdP5 dataset created in this work, as summarized in Figure 1, 
which comprises 3D structures of 96,793 organopalladium 
complexes derived from five fundamental coordination 

scaffolds, L, PdL, PdLRX, PdLR₁R₂, and PdLRBorate (detailed in 
Supplementary Table S1). The dataset construction involves 
rigorous sampling of 3.7 million distinct 3D molecular 
conformations. From the PdP5 dataset, we randomly selected a 
small Pd-2000 dataset for benchmarking purpose.  

The 3D structures of PdP5 dataset are all generated from 2D 
molecule graphs using our DGM method that allows fast 
template-based substitution along the best-regarded reaction 
pathway of the classic organometallic Suzuki-Miyaura reaction, 
as shown in Figure 1a. It proceeds through three elementray 
steps in the coupling reaction47–49, namely, oxidative addition 
(OA), transmetallation (TM), and reductive elimination (RE). Our 
2D library thus includes 14 distinct graphs: intermediates 1-7, 
reactants (R1X, R2B(OH)₂), product (R1R2), ligand (L), and TSs (OA-
TS, TM-TS, RE-TS), among which the five templates L, PdL, PdLRX 
(3), PdLBorate (5), and PdLR1R2 (6) are the representatives 
defining the chemical space. As shown in Figure 1b, the ligand 
types considered include both template-derived ligands (PR3 
and dppv) and commercial ligands:  6,987 mono-phosphine 
ligands (435 commercial and 6,552 PR3 scaffold) and  9,690 bis-
phosphine ligands (170 commercial / 9,520 dppv scaffold). They 
can be better visualized through t-distributed stochastic 
neighbor embedding (t-SNE) clustering algorithm in Figure 1c: 
template-derived ligands form many densely packed clusters 
(orange/green regions), spaning over a continous chemical 
space, while commercial ligands disperse in the space (red/blue 
points), reflecting heterogeneous nature of the commercial 
ligands. The methodology for assembling fragments into 
scaffolds is illustrated in detail in Supplementary Figure S1. 

 
3. The BDGM-PES method and Pd-complex generator 

Our BDGM-PES aims to solve two fundamental challenges in 
reaction design: (1) structure data accumulation of large 
molecular systems; 2) uncharted chemical space exploration. 
The former is via a universal generative model for both minima 

Figure 1 Construction Pd-P database from 2D graphs of Suzuki-Miyaura coupling Reaction. (a) Template-driven exploration of 
chemical space using 2D graph representations of Suzuki-Miyaura cross-coupling reactions. (b) Type of molecular building blocks, 
including molecules and fragments, represented by 2D graphs. (c) Chemical feature visualization via t-SNE projection of ligand 
molecular Morgan fingerprints.  
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and TS structure generation and the latter utilizes an active 
learning workflow facilitated by G-NN potential. In this work, we 
show that BDGM-PES can generate automatically reaction 
pathways involving complex transition metal-ligand interaction 
and non-covalent interactions (such as metal-𝜋 interaction and 
ions in catalytic systems) for the first time, thereby enabling 
reaction design of organometallic catalysis systems.    
3.1 HPNN-ET architecture of DGM 

As the core of BDGM-PES method, an SE(3)-equivariant 
machine-learning model, namely high-order pair-reduced 
neural network with edge and time information (HPNN-ET), is 
developed for 3D structure generation. Compared with previous 
DGM, our HPNN-ET has two key features: (1) a unified 
information fusion strategy in gathering 2D and 3D information. 
(2) an enhanced equivariant architecture for spatial 
discrimination between structures. More details on the diffusion 
process algorithm used in HPNN-ET training and sampling can be 
found in Methods. Here we briefly introduce the architecture 
and highlight the major advances.   

Figure 2a illustrates the HPNN-ET architecture, which unifies 
and updates all molecular information in one model. It 
incorporates three connected modules: input processing, 
interaction via message passing, and output generation. The 
input module systematically integrates three heterogeneous 
data streams through embedding layers: atomic-specific scalar 
𝑥!  and vector 𝑣!  features on atomic node 𝑖 ; pairwise 
interactions, 𝑣!" ,	𝑏!" , 𝑅!" , 𝑒!" , between node 𝑖 and 𝑗; temporal 
diffusion dynamics (𝑡 ), where xi and bond-type indicator 𝑏!" 
initiate from embedding layers using atomic number and bond 
type (e.g., single bond) information, respectively; while 𝑣! 
vectors are initialized as zero vectors; the radial basis function 
transforms interatomic distances into continuous embeddings 
𝑅!" ; the conditional and unconditional information are fused  
into 𝑒!" = 𝑏!" ∘ 𝑅!". The temporal diffusion component 𝑡 ∈ [0,1] 
indicate the process of diffusion. All inputs undergo progressive 
update through three cascaded interaction blocks that 

accomplish the information fusion. The architecture ends with 
an output layer that generates atom-specific vector 𝑣! that 
further form the score function 𝑠# ∈ ℝ$!"#$×&  for the 
generative process. 

The interaction block constitutes three high-order pair-
reduced (HP) layers, performing message passing to update the 
node feature 𝑥!  and vector 𝑣!  simultaneously, as detailed in 
Figure 2b. The message passing is a pairwise operation, thus 
computationally demanding, to collect the geometrical 
information of atomic pairs using the interaction information 𝑒!" 
and the spherical function 𝑌'((𝒓)*8888⃗ ). To enhance the geometry 
discrimination between structures, we utilize high-order spheric 
function 𝑌'((𝒓𝒊𝒋) with lmax up to 6. To enhance the performance 
of message passing, we reduce the dimension of atomic features 
𝑥! and vector parameters 𝑣! with a shrinking linear layer upon 
entering interaction block, but restore the dimension with an 
expanding linear layer once the pair operation is finished. By this 
way, the parameter space size of HPNN will not be compromised 
at the expense of the demanding pair operation since the 
subsequent atomic NN remains at the full dimension 𝑥! . In 
practice, the pair dimension (PD) can shrink to half or even 
quarter. 

Table 1 shows HPNN-ET-based DGM performance for creating 
3D structure of Pd-coordinated complexes (maximum 233 
atoms, average 120.4 atoms) together those of popular 
algorithms, including RDKit via traditional cheminformatics 
approaches50, local environment prediction models (GeoMol)27, 
and diffusion-based DGMs using Cartesian coordinates 
(GeoDiff)32 or torsional angles (TorsionalDiff)36. All models are 
trained on the same Pd-2000 dataset. For HPNN-ET-based DGM, 
results from three architectural variants are listed, which differ 
in the maximum order of spherical harmonic (A: lmax=1, B: lmax=1, 
C: lmax=6) and the shrink of PD (B: quartic reduction, A/C: half 
reduction). 

As shown in the table, our HPNN-ET model achieves the best 
performance across all evaluation metrics. HPNN-ET-A achieves 

Figure 2. The architecture of HPNN-ET neural network. (a). The architecture of HPNN-ET model. (b). The details of HP 
layer. 
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high geometry precision (median RMSE of 0.04 Å) while 
maintaining high accuracy (described by topology matching 
score, 100%) and generation efficiency (0.60 s per structure). 
Notably, HPNN-ET-B, the variant with the PD reduced to a 
quarter, achieves the highest time efficiency (0.35 s per 
structure), outperforming even the empirical RDKit method 
(0.68 s) while still maintaining a high geometric precision (0.05 
Å). A detailed benchmark for the trade-off on PD is shown in 
Supplementary Table S2. HPNN-ET-C achieves the highest 
precision (0.04 Å) thanks to the incorporation of higher-order 
spherical harmonics (lmax=6), but its generation time (0.94 s) 
increases by 3-fold compared to HPNN-ET-B, suggesting the use 
of lmax=6 can be applied to the scenarios that very high geometry 
precision is required. RDKit demonstrates the second-best 
precision 0.24 Å with 98.7% matching score. For the other three 
ML-models, TorsionalDiff achieves moderate precision (0.52 Å) 
but suffers from low matching (31.2%), suggesting that torsional 
space parameterization may not adequately constrain metal 
coordination geometries; GeoDiff prioritizes structure topology 
(91.4%) at the expense of precision (0.84 Å). The performance 
of GeoMol is poor with a low matching 2.17%.  

Furthermore, we note that HPNN-ET model can treat well 
large molecular systems beyond the training set, the 
extrapolation ability, as listed in Table 1. All HPNN-ET variants 
achieve the perfect topology matching (100%) for large Pd-
coordinated complexes (362 atoms, see Supplementary Figure 
S2), and have high computational efficiency as exemplified by 
HPNN-ET-B that accomplishes the task in only 1.2 seconds. In 
contrast, other ML models exhibit catastrophic failure in this 
challenging scenario, showing a complete prediction breakdown 
(0.0% correctness); and RDKit demonstrates relatively better 
performance with 80% correctness, although being still much 
worse than HPNN-ET models.  

We have also performed ablation analysis on HPNN-ET to 
evaluate the impact of the unified information fusion strategy. 
It turns out that the strategy strongly enhances the precision 
(0.07 Å to 0.04 Å), while also improve the generation speed by 
8% compared to a separated processing of unconditional and 
conditional information (Supplementary Table S3). The 
implementation of temporal encoding (t) and pairwise 
interaction encoding (eij) improve precision by 43% and 57%, 

respectively; the inclusion of bij dramatically improves the 
topology matching from 6.7% to 100% (Supplementary Table 
S4).  

The high-performance architecture of HPNN-ET allows us to 
generate a general-purpose DGM for molecules. For this 
purpose, we curated a dataset of 437,952 molecules comprising 
94,697 Pd-phosphine ligands from this work, 273,501 drug-like 
molecules from GEOM-DRUG51, and 69,754 structures 
containing all elements ≤ 86 from the PubChem database 
(detailed in Supplementary Information B) and trained the 
general DGM. From this dataset, we randomly selected 1,000 
molecules covering all 86 elements for testing. The model 
achieved 99.5% matching scores not only on this representative 
test set but also 100% on the Pd-2000 benchmark. Moreover, it 
attained a median RMSE of 0.07 Å for precision on Pd-2000 
structures (exemplified in Supplementary Figure S3). This 
general-purpose DGM model is openly accessible at website 
www.laspai.com. 

Now we turn to solve the TS structure generation issue. In this 
work, we develop a dual-phase constraint-guided generation 
algorithm for TS generation, exploiting the transferability of 
machine learning model from minima to TS. This is inspired by 
Hammond's postulate52, which posits structural similarity 
between TS and the associated minima (IS or FS). In dual-phase 
constraint-guided generation algorithm, we can first generate 
the TS-like 3D structure, the guessed TS structures, using the 
DGM trained on minima geometries. The molecular graph of TS 
is directly utilized as the input, along with an additional 
constraint biasing the molecule towards TS during sampling. 
Details for constrained generation of TSs can be found in 
Methods. This enables a fast TS-like structure generation 
without requiring TS structure data a priori as training set, 
achieving the zero-shot TS generation. The guessed structure is 
further optimized towards TS through the Constrained Broyden 
Dimer (CBD) algorithm, a single-ended TS searching algorithm 
developed by our group.43,53 In the second phase, we search for 
TS exactly based on these guessed TS structures, and by 
incorporating the validated TS structures into training set, we 
retrain the DGM to directly generating the TS without constraint. 
This dual-phase constraint-guided generation strategy achieves 
both efficiency and chemical accuracy in TS dataset 

Table 1 Comparison of 3-D structure generation on Pd-phosphine complexes datasets from current models.  

Model Description 
Param 
Num 

Precisiona (Å)  Matching Score b 
(%) 

Efficiencyc 
(s) 

Extrapolationd 
(%) mean median 

RDKit Empirical None 0.27 0.24 98.7 0.68 80 
GeoMol Local Environment 75K 0.35 0.38 2.2 10.14 × 
GeoDiff EGNN, lmax = 1 0.8M 0.85 0.84 91.4 4.38 0.0 

TorsionalDiff Torsional Space 1.0M 0.55 0.52 31.2 1.09 0.0 
HPNN-ET-Ae lmax = 1, PD = 256 5.4M 0.08 0.04 100 0.60 100 
HPNN-ET-Be lmax = 1, PD = 128 3.8M 0.10 0.05 100 0.35 100 
HPNN-ET-Ce lmax = 6, PD = 256 7.55M 0.07 0.04 100 0.94 100 

HPNN-ET-Generalf lmax = 6, PD = 256 7.55M 0.16 0.07 100 0.94 100 
a Precision is measured by the RMSE of atom coordinate between generated molecular structures and their fully relaxed counterparts. 
b Matching Score is measured by the topology matching ratio, which quantifies the ratio of 3D molecular structures that maintain topological 
isomorphism with their corresponding 2D molecular graphs. 
c The benchmark was conducted on an RTX 4090 GPU, except GeoMol's results from its CPU-based model, on EPYC 9474F CPUs (2 sockets,96 
cores). 
d Extrapolation topology correctness, similar to the Matching Score, is tested on a Pd-coordinate complex containing 362 atoms that are not utilized 
in training dataset (Supplementary Figure S2). 
e Different HPNN-ET models. The pair-dimension (PD) is set to 256, 128, 256 for A, B, C respectively. A, B utilize only L=1 in spheric function, while 
C take advantage of higher order of spheric with L up to 6.  
f The general-purpose (element≤86) HPNN-ET model trained on 467,757 molecules. 

http://www.laspai.com/
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construction. Compared to existing approaches employing 
disparate architectural frameworks for minima generation (e.g., 
utilizing dual embedding for IS and FS graphs)26,31,34, our 
methodology unifies TS and minima generation within a single 
framework, achieving a powerful generalized generative model 
addressing both minima and TS generation.  

 
3.2 BDGM-PES framework  

Figure 3a illustrates the workflow of BDGM-PES framework, 
which implements a closed-loop architecture for autonomous 
chemical space exploration. It contains four stages in cycle: (i) 
3D structure generation guided by 2D molecule graph, (ii) 
structure optimization on PES, (iii) structure knowledge update, 
and (iv) DGM training.  

Stage i generates moleculear 3D structure that satisfies the 
molecular topology in 2D graph. The structure generator is RDKit 
initially and then switches to DGM in the subsequent cycles.  
This stage establishes the bidirectional mapping between 2D 
molecular graphs and their 3D conformers, ensuring structural 
consistency for subsequent structure optimization (stage ii) and 
DGM training (stage iv).  

Stage ii utilizes the global NN (G-NN) potential for PES 
optimization of DGM-generated 3D structures, which serves to 
identify true minimum or TS structure. Our previous work has 
shown that G-NN calculation is several orders of magnitude 
faster than DFT while maintaining the high accuacy in energy 
and structure. Supplementary Table S5 and S6 benchmark the 
structure accuacy of G-NN optimized structure compared to 
DFT, which shows the median RMSE is below 0.02 Å forminima. 

Stage iii implements an adaptive knowledge cumulation 
through integrating novel conformers that are predicted poorly 
by Stage i as compared to the optimized geometry at Stage ii. 
Stage iii execuctes repeatedly Stage i generation and Stage ii 
optimization, archiving new conformations systematically and 
thus evolving the chemical knowledge base. 

Stage iv establishes an energy-driven generative training 
paradigm. The thermodynamically most stable 3D conformation 
is selected for each 2D molecular graph as the canonical 
structural label to update the DGM. With the retrained DGM, 
one can repeat Stage i-to-iv to expand the knowledge base and 
obtain a better DGM.  

The iterative learning process of BDGM-PES can 
systematically improve the quality of generated structures 
towards uncharted chemical space, driving them closer to the 
most stable minima on PES. In general, for metal-containing 
complexes, the initial 3D geometry from RDKit deviates largely 
from the optimized structure on PES (RMSE = 0.34 Å), and 
notably, the Pd complex adopts an energetically unfavorable 
tetrahedral configuration (ΔE = +1.59 eV) instead of the most 
stable square-planar geometry. RDKit-generated structures also 
miss some important geometry motifs, such as Pd-π interactions 
in the “B-ring” of Buchwald ligands54–57 (exemplified in 
Supplementary Figure S4). Figure 3b illustrates the relative 
energy (ΔE) evolution of 10,694 palladium-containing PdLRX 
scaffold molecules over ten iterative cycles of BDGM-PES. ΔE 
quantifies the molecular instability by calculating the energy 

Figure 3. Active learning workflow of the BDGM-PES framework.  a. Schematic architecture of the BDGM-PES framework. b. 
evolution of ΔE for 10,694 molecules in PdLRX dataset along the active learning cycles. The x-axis represents the iteration cycle, 
where "cycle 0" corresponds to the initial structures before training, and subsequent cycles represent the updated structures 
through of the BDGM-PES process. The y-axis indicates the relative energy (ΔE, in unit eV), which evaluates the instability of the 
most stable conformer in each cycle compared to that in the final (10th) cycle. c. Structural refinement of Mol A through successive 
active learning cycles. d. Transition state generation for TS A (left) by distance constraint (middle) and DGM-TS (right). The 
generated result is in solid color, while that optimized after CBD algorithm is represented by blue shading.  
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difference between the most stable conformer in the given cycle 
and that in the final (10th) cycle. As shown, there is an average 
of 1.05 eV energy drop per molecule after ten cycles. The most 
substantial improvement occurred in the first cycle (-0.40 eV), 
followed by progressively smaller gains (-0.29 eV in cycle 2, -0.12 
eV in cycle 3), before converging (ΔE ≤ 0.02 eV after cycle 9). 
Similar iterative refinement is found for other scaffold 
molecules, where the average energy of L, PdL, PdLR1R2, and 
PdLBorate datasets drop by 0.10 eV, 0.86 eV, 1.07 eV, and 1.38 
eV, respectively. For example, Figure 3c shows the 3D structure 
evolution of molecule A, a Pd(II) complex comprising a ddpv 
chelating ligand, chloride (Cl⁻), and an aryl fragment. Its large 
energy reduction (1.59 eV) after 10 cycles is mainly caused by 
the Pd coordination transformation from tetrahedral to square-
planar pattern. The final generated geometry reaches an RMSE 
of 0.09 Å per atom compared to the G-NN structure.  

Equipped with the general DGM trained on extensive 
molecule structures, we employ our dual-phase constraint-
guided generation algorithm to produce high-quality 3D TS 
structures. As illustrated in Figure 3d, the algorithm applies 
geometric constraints to the three atoms in the reaction center 
during generation: d(Pd–C) = 2.16 Å, d(Pd–Br) = 2.51 Å, and d(C–
Br) = 2.09 Å. This constrained DGM generates an initial TS 
structure (TS A) possessing the correct bond topology. This 
initial structure is then refined through relaxation (keeping Pd, 
C, and Br fixed) and a subsequent optimization through CBD 
algorithm, to produce the TS. A true TS is confirmed by 
identifying a single imaginary frequency corresponding to the 
reaction coordinate. However, comparing this initial TS guess to 
the reference TS geometry reveals a significant deviation, with 
an RMSE of 0.68 Å (see Figure 3d). To address this limitation, we 
incorporated the generated TS data into further training, 

Figure 4. Rational ligand design for Suzuki-Miyaura reaction through BDGM-PES method. a. Reaction profile screening for 81 
types of ligands for target C-C coupling reaction: 2-bromo-m-xylene coupling with 2-isopropylphenylboronic acid. The structure 
of species 2 for L1 is noted as L1-2. The structure of TSs for OA, RE, and TM, are exemplified by the structures of L1, noted as L1-
OA-TS, L1-TM-TS, and L1-RE-TS, respectively. b. Illustration of the CART tree in classifying the reactivity of ligands. The ligands are 
set to true if the ligand have final productivity greater than 40%. c. The structure and reaction yield of phosphine ligands (L’: from 
literature [14] that reaches yield 81%) 
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yielding an enhanced model termed DGM-TS. DGM-TS 
substantially improves TS generation quality. Key bond distance 
errors in the generated TS (TS A) are minimized: Δd(C-Br) = + 
0.03 Å and Δd(C–Pd) = + 0.02 Å, while the overall RMSE 
decreases dramatically to 0.09 Å. The effectiveness of this two-
stage approach (constrained generation followed by DGM-TS 
refinement) is demonstrated on a larger test set of 2414 
molecules (detailed in Supplementary Figure S5). The 
constrained generation stage successfully identified the correct 
TS topology in 87.0% of cases. Subsequent refinement using 
DGM-TS significantly increased the success rate to 98.6%. These 
results underscore the strong zero-shot capability inherent in 
our BDGM-PES architecture.  
4. Reactivity prediction and Experiment verification  

Taking BDGM-PES, we can now in-silico explore unknown 
reaction space to design desirable catalysts. Here we select 
Suzuki-Miyaura coupling as the target to search for the best Pd-
P catalysts for 2-bromo-m-xylene and 2-isopropylphenylboronic 
acid with K₃PO₄ as the base. The main purpose of BDGM-PES 
method is to screen the ligand space of Pd-P catalysts to achieve 
the highest activity. In total, 81 phosphine ligands are 
considered, among them 27 from the existing experiment by 
Doyle et al. with the activity ranging from 0 to 81 % conversion14, 
and 54 from commercially available phosphine ligands where no 
previous experiment results are available. 

 
Using the BDGM-PES, we generated reaction pathways for all 

81 Pd-P catalysts, with their corresponding energy profiles 
presented in Figure 4a. All structures, including the key TSs (OA-
TS, RE-TS, and TM-TS), were initially generated and optimized 
using BDGM-PES, followed by final optimization at the PBE-D3 
level of DFT (see Methods).  

Representative TS structures for ligand L1 are shown in Figure 
4a insets, namely L1-OA-TS, L1-TM-TS and L1-RE-TS. The L1-OA-
TS exhibits a three-centered TS where the Pd atom coordinates 
with the Br atom while simultaneously interacts with the 
aromatic ring's C atom; key bond distances here being d(Pd-C) = 
2.11 Å, d(Pd-Br) = 2.58 Å, and d(C-Br) = 2.09 Å. Next, the L1-TM-
TS involves a 4-membered ring (O-B-C-Pd atoms), characterized 
by Pd-C bond formation and C-B bond breaking, with the O atom 
coordinating to Pd. The involved TS distances are d(Pd-C) = 2.29 
Å, d(B-C) = 2.19 Å, d(B-O) = 1.45 Å, and d(Pd-O) = 2.23 Å. Finally, 
the L1-RE-TS, also a three-centered state, leads to the C-C bond 
formation in the aromatic rings and the cleavage of two Pd-C 
bonds, and the critical TS bond lengths are d(Pd-C1) = 2.12 Å, 
d(Pd-C2) = 2.05 Å, and d(C1-C2) = 2.12 Å.  

We emphasize that different ligands follow similar structural 
scaffolds, but the individual geometries and energies vary 
significantly due to differences in ligand properties, as 
summarized in the reaction profiles Figure 4a. The energy span 
for an individual states can be up to several eV. For instance, OA-
TS energies average 1.13 eV, ranging from 0.28 eV (lowest) to 
2.07 eV (highest). One must bear in mind that these profiles 
reflect only the reaction kinetics in the gas phase, which partly 
explains the large energetic heterogeneity as the homogeneous 
reaction conditions should be important in controlling reaction 
rates. Nevertheless, this comprehensive reaction kinetic data 
provides valuable kinetics descriptors, offering the foundation 
for guiding reaction design.  

From the reaction profile, we can obtain six energy-based 
descriptors, i.e., the forward (f) and reverse (r) reaction barriers 
for three elementary steps, i.e.,𝐸-(OA). , 𝐸-(OA)/ , 𝐸-(TM). , 

𝐸-(TM)/ , 𝐸-(RE). , 𝐸-(RE)/ . The value of these descriptors 
can be found in Supplementary Table S7. Using these 
descriptors and 27 existing experimental datapoints, we built a 
binary Classification and Regression Tree (CART) model to 
identify key descriptors governing catalytic activity. After 
training on experimental data, a tree depth of 2 proves sufficient 
for catalyst classification. The decision tree first splits ligands at  
𝐸-(OA)0  = 3.03 eV. Ligands exceeding this reverse oxidative 
addition barrier are classified as inactive, excluding 7 inactive 
catalysts correctly. The remaining ligands are further partitioned 
at 𝐸-(TM)0  = 1.13 eV based on transmetallation energy 
analysis, again correctly screening out 4 additional inactive 
cases. The terminal node predicts 16 ligands as active (predicted 
yield > 40%, as shown in Supplementary Table S8). This simple 
model achieves high fidelity with only 2 ligands incorrectly 
predicted as active (88.9% correctness). Using this optimized 
2Depth CART model, we screened 54 commercially available P-
ligands and predicted 20 as active catalysts (Supplementary 
Table S9).  

To validate these predictions, we experimentally tested 9 
ligands with low price and easy access on market. All our 
experiments employed Pd₂(dba)₃ (3 mol%) and K₃PO₄ under 
standardized conditions (all experiments detailed in 
Supplementary Information C). Our experiment results reveal 
that 7 out of the 9 ligands can achieve >40% yield, i.e., 77.8% 
prediction correctness. Especially, this screening revealed five 
novel active P-ligands (L1-L5) yielding > 60% product. 
Particularly remarkable are P(t-Bu)2-TripyrazPh (L1), P(t-Bu)2-
IndolPh (L2), and P(t-Bu)2-Naph (L3) with yields of 81.1%, 79.5%, 
and 76.1%, respectively. It is interesting that, interestingly, all 
L1, L2, L3, L4, as well as L’, the ligand with highest activity in the 
literature, all belong to the bulky Buchwald-type family, which 
are widely recognized as excellent choices for C-C and C-N 
coupling reactions.58–61 These ligands possess key structural 
features that critically influence catalytic behavior: their large 
size promotes the formation of highly reactive mono-dentate 
PdL species by positioning the "B ring" (Figure 4a, L1-2) within 
the metal's first coordination sphere, thereby sterically 
preventing the binding of multiple ancillary ligands. 
Furthermore, they stabilize the unsaturated Pd center through 
Pd-arene interactions involving the biaryl π-system, exhibiting a 
pseudo-bidentate mode. These characteristics align well with 
our computational results. 
(1). 𝐸-(OA)1 for L1-L4, and L’ (0.88, 1.47, 0.99, 0.65, and 0.96 
eV, respectively) fall within a moderate range (0.28–2.07 eV 
across all ligands studied), suggesting that optimal catalytic 
activity requires barriers that are neither excessively high nor 
prohibitively low. 
(2). Intermediates 4 and 5 for ligands L1-L4 exhibit unusually 
high relative energies (low stability) compared to other ligands. 
Intermediate 4 energies rank at positions 3 (-1.04 eV), 7 (-1.17 
eV), 2 (-0.91 eV), 23 (-1.53 eV), and 51 (-1.94 eV) for L1-L4, L’ 
respectively, while intermediate 5 energies take positions 7 (-
0.58 eV), 11 (-0.80 eV), 3 (-0.24 eV), 22 (-1.13 eV), and 57(-1.64). 
Nevertheless, their intermediates 4 and 5 are still more stable 
than preceding states 1 and 3, preventing the reverse reaction 
to occur but facilitating the forward reaction, effectively 
smoothing the whole energy profile. Too stable intermediate 4 
and 5 will obviously inhibit the reaction by stopping at 
subsequent RE reaction (6->7). This is attributed to the 
Buckwald-type ligands’ ability in preventing the formation of 
high-coordination with other ligand/bases (>1).  
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The moderate OA barriers together with the destabilization 
of intermediates explain the high catalytic performance 
observed for L1-L4, demonstrating the kinetics descriptors 
generated from BDGM-PES do enable physics-informed rational 
ligand screening. 

 

Conclusion  
To recap, we develop a general theoretical framework, 

namely BDGM-PES, for reaction design by combining DGM of 
structure generation, PES calculation for structure evaluation 
and optimization and active learning for exploring uncharted 
chemical space. Our DGM utilized a HPNN-ET model, an 
enhanced equivariant architecture with unified information 
fusion strategy. The PES optimization is based on G-NN potential 
which can achieve fast and accurate structure relaxation and TS 
search. Taking Pd-catalyzed Suzuki reaction as example, we 
demonstrate that BDGM-PES is an automated and highly 
efficient method to generate new molecule structures, reveal 
reaction pathways and design new catalysts. Specifically, we 
achieve the following. 

(i) A general DGM (accessible from 
http://www.laspai.com/) based on HPNN-ET 
framework covering all elements from the first four 
periods of the periodic table (H to Xe, Z =1-54), 
trained on Pd-database, GEOM-DRUG, and metal-
containing compounds from PubChem (total 
467,757 structures). This enables fast, accurate and 
autonomous molecular structure generation: high 
topology correctness (100%), high geometry 
precision (deviation < 0.05 Å), as well as high 
computation efficiency (0.35s per structure) for 
large metal-containing complexes (e.g. more than 
100 atoms).  

(ii) Reaction pathway generation with optimized 
reaction intermediates and TSs, leading to 81 Pd-
catalyzed Suzuki C-C coupling energy profiles for 
reaction design.  

(iii) Identification of 7 active P-ligand from experiment 
for 2-bromo-m-xylene coupling with 2-
isopropylphenylboronic reaction following 
theoretical predictions, among them the best ligand 
achieves >80% yield (L1: 81.1%).  

 

Method 
Details of diffusion process described by stochastic differential 
equation (SDE) 

We follow the variance exploding stochastic differential 
equation (VE-SDE) to construct the DGM.33 The model is trained 
on the forward diffusion process of VE-SDE, as shown in Eq1. 

d𝒙 = 𝑔(𝑡)d𝒘							(𝟏) 
where 𝒙 ∈ ℝ$!"#$×&  represents the atomic coordinates; 𝒘  is 
the standard Wiener process and 𝑔(∙) is the diffusion coefficient 
of 𝒙(𝑡); 𝑡 describes the diffusion process and increases from 0 

to 1. VE-SDE sets 𝑔(𝑡) = H2[4
%(6)]
26

, where 𝜎9(𝑡) is the variance 

of stochastic gaussian noise at 𝑡 . The cumulation of noise in 
gaussian form from 0 to 𝑡 lead to the distribution of 𝒙 is denoted 
as 𝑝:6(𝒙(𝑡)|𝒙(0), from which the ∇;log𝑝:6(𝒙(𝑡))|𝒙(0) can be 
obtained, which is crucial in the reverse process of diffusion 

(vide infra). We use the score function 𝒔𝜽(𝒙, 𝑡) to approximate 
∇;log𝑝6(𝒙) via Eq2 by minimizing the expectation value 𝔼6:  

𝜽∗ = argmin
𝜽

𝔼6X𝑎(𝑡)𝔼𝒙(:)𝔼𝒙(6)|𝐱(:)[‖𝒔𝜽(𝒙(𝑡), 𝑡)

− ∇;log𝑝:6(𝒙(𝑡)|𝒙(0)‖99]\ 
(2) 

where 𝑎(𝑡) ∝ 𝜎A9(𝑡) weights the loss across time. This score 
function 𝑠# is defined through a neural network, i.e., HPNN-ET 
in this work. HPNN-ET satisfy two key requirements: (1) preserve 
SE(3) equivariance for atom coordinates to maintain geometric 
consistency; and (2) integrate correctly molecular 2D graph 
information to ensure proper stoichiometry and bonding 
connectivity.  

In 3D conformation generation, VE-SDE takes the reverse 
process starting from noise, as shown in Eq 3, 
d𝒙 = [−𝑔𝟐(𝑡)𝒔𝜽(𝒙(𝑡), 𝑡)]d𝑡 + 𝑔(𝑡)d�̀�       (3) 

, where �̀� is a standard Wiener process when time flows 
backwards from 1 to 0.  

In generating TS structure, we introduce a constrained 
generation process to incorporate chemical heuristics directly 
into the sampling procedure. Specifically, we define a set of 
atoms 𝓝𝒎𝒐𝒅 , where chemical knowledge, such as reaction 
center geometry or typical bond-length/bond-angle constraints 
for a TS, is applied.  

d𝐱𝐢 = c
𝒅𝒙																𝒊𝒇	𝒊 ∉ 𝓝𝒎𝒐𝒅
d𝒙𝐦𝐨𝐝									𝒊𝒇	𝒊 ∈ 𝓝𝒎𝒐𝒅

                         (4) 

As shown in Eq. (4), for atoms are not present in 𝓝𝒎𝒐𝒅, the 
update follows the normal reverse diffusion in Eq. (3). For atoms 
in 𝓝𝒎𝒐𝒅, the update is modified to d𝒙JKL which is defined in 
Eq. (5):  

d𝒙𝐦𝐨𝐝 = h1 − 𝜆(𝑡)jd𝒙 + 𝜆(𝑡)ℎ(𝒙JKL) 
(5) 

The term 𝜆(𝑡) serves as a time-dependent factor to modulate 
how much of the displacement in the diffusion process is 
contributed by chemical heuristics versus the gradient (𝒔𝜽 ). 
Typically, 𝜆(𝑡) ascends to 1 at the end of denoising. Meanwhile, 
ℎ(𝒙JKL)  defines how the heuristic-informed displacement is 
introduced. ℎ(𝒙JKL)  can be formulated using correlation 
function by scanning the reaction coordinates (e.g. reacting 
bond lengths, bond angles, and dihedral angles). For instance, in 
a reaction where bonds are making or breaking, we describe the 
reaction mode by pair distance (𝑑!"), as defined in Eq. 6 

ℎ(𝒙𝐦𝐨𝐝)! = ∑ (n𝐱𝒊 − 𝐱𝒋n − 𝑑!") ∙
𝐱𝒊A𝐱𝒋
M𝐱𝒊A𝐱𝒋M"               (6) 

Using this strategy, we can bias the generated conformations 
according to the reaction mode, thereby boosting the model’s 
expressive power. In practice, one can train on minima 
structures (e.g., the IS and FS) and use simple heuristics to guide 
the generation of TS structures.  

 
High-order Pair-reduced with Edge and Time Neural Network 

The HPNN-ET architecture follows the standard message-
passing neural network (MPNN)62 framework that has been 
widely utilized in generating machine learning potentials, while 
introducing critical innovations in feature representation and 
update mechanisms. As illustrated in Figure1a, our model 
processes atomic systems through three primary stages: (1) 
hierarchical feature abstraction, (2) multi-modal message 
passing, and (3) iterative co-update of invariant and equivariant 
representations. 

The system begins with a 3D atomic structure that is projected 
into a hybrid 2D-3D graph representation. Each atom (node) is 
initialized with invariant features 𝑎! ∈ ℝN(×O  derived from 
elemental properties (e.g., atomic number), while equivariant 
features are initialized as 𝒗𝒊 = 𝟎88⃗ ∈ ℝN(×&. The 𝐿P denotes the 
length of atomic embedding, also the node dimension. Neighbor 
selection employs a dual-criterion approach, where atom 𝑗  is 

http://www.laspai.com/
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considered adjacent to central atom 𝑖 if it satisfies either  𝒏 th 
order adjacency in the 2D molecular graph, or partial proximity 
within radius 𝑟Q  (typically 𝒏 =7, 𝑟Q =5.0 Å) 

Edge attributes 𝑒!" synthesize multiple interaction modalities 
of conditional and spatial through Hadamard product of 𝑏!" and 
𝑅(𝑟!"), as shown in Eq 7, where the bond-type embedding 𝑏!" is 
derived from chemical interaction types determined jointly by 
2D-graph adjacency and bond type; the spatial encodings 𝑅(𝑟!") 
is from radial basis functions, as shown in Eq 8, where k indexes 
a series of gaussian centers to discretize the pair distance. In 
addition, we may also include the high order angular 
information via real spherical harmonics 𝑌'((𝜃, 𝜙)  with l > 1 
using Eq 9 (⊕ represents concatenate operation, Nei represents 
the neighbor of atom i). 

𝑒!" = 𝑏!" ∘ 𝑅(𝑟!")																																											  (7)   

𝑅!"R = exp z− S/)*A/+T
%

94%
{                                    	(8) 

																𝑥! = 𝑥! +𝑾𝒍}∑ 𝑾𝒍,𝒎𝒀𝒍𝒎(𝒓𝒊𝒋)$W!
" }

9
⊕

																					𝑾𝟏}∑ 𝑾𝟏,𝒎𝒀𝟏𝒎(𝒓𝒊𝒋)$W!
" }

9
																																								(9)	

Our architecture involves the co-update of invariant (𝑥!) and 
equivariant (𝒗𝒊) atomic features. As illustrated in Figure 1a, this 
process unfolds through three iterative cycles (denoted as c in 
the following Eqs) through interaction block, implemented with 
residual connections. A unified information fusion strategy in 
gathering 2D and 3D information, as well as temporary 
information ( 𝑡 ∈ ℝN( ) into 𝑥!  and 𝒗𝒊 . The interaction block 
typically includes three components, message-construction, 
message aggregation, and feature integration.  
Message Construction. At each iteration 𝑐, neighboring atom 
pairs (𝑖,	𝑗) generate through Eq 10 and 11.  

𝑠!"Q = 𝑾↓𝑥" ∘𝑾𝑒!"                                      (10) 
𝒗𝒊𝒋𝒄 = 𝑠!"Q ∘ (𝒀𝟏𝒎(𝒓𝒊𝒋) +𝑾𝒓𝒊𝒋)                           (11) 

The invariant pair information 𝑠!"Q  is produced by multiplying 
reduced 𝑥" and 𝑒!" via the shrinking linear layer 𝑾↓. In Eq 10, 𝑠!" 
is then broadcast to multiply with the equivariant vector 
constructed from 𝒀𝒍𝒎(𝒓𝒊𝒋) and 𝑾𝒓𝒊𝒋 in Eq. 11. 
Message Aggregation. Each atom accumulates information 
from its neighborhood through Eq 12 and 13.  

  𝒉𝒊,𝒗𝒄 = (𝑾𝒕𝑡 + 𝑏6) ∘ (𝑾↑∑ 𝒗𝒊𝒋𝒄$W!
" ) + 𝒗𝒊𝒄                 (12) 

ℎ!,;Q = 		}𝑊'𝒉𝒊,𝒗𝒄 }9⊕h∑ 𝑠!"Q$W!
" +𝑾↓𝑥"j																(13) 

In Eq. 11, the expanding linear layer (𝑾↑) update 𝒗𝒊𝒄 once the 
pair operation is finished, and the time-dependent modulation 
is through a normalized temporal embedding 𝑡 ∈ (0,1) , with 
linear embedding through 𝑾𝒕 and 𝑏6 (Eq 12). A varibale angular 
interaction scheme is developped to incorporate both 
equivariant and invariant information. The former is conducted 
through normalization, as shown in Eq 13 leading term on the 
left side, and the latter is formulated in Eq 13 after the 
contatenation operation ⊕.  
Feature Integration.  
The central atom updates its features by synthesizing 
accumulated messages with temporal dynamics through Eq 14 
and Eq 15.  

𝑥!Q^O = 𝑁𝑁hℎ!,;Q j																																											(14) 
𝒗𝒊𝒄^𝟏 = 𝑥!Q^O + 𝒉!,_𝒄                                       (15) 

The 𝑁𝑁(∙) denotes the atomic NN layer (depicted in Figure 2b), 
which sequentially incorporates operation of linear layer, layer 
normalization63, activation function, and linear layer. 𝑥!Q^O and 
𝒗!Q^O is produced after these above interactions. 

The final atomic coordinates are predicted through an 
equivariance-preserving readout module that maintains 
geometric consistency with the SE(3) symmetry group. As 
depicted in Eq. (16), the equivariant feature vector 𝒗𝒊 ∈ ℝN(×& 

undergoes dimension reduction via a learnable projection 
matrix 𝑾↓ to finally produce score function 𝒔𝜽,(𝒙, 𝑡) ∈ ℝO×& 

𝑠#,! = 𝑾↓𝒗𝒊                                    (16) 
DFT calculations 

All DFT calculations were performed by using the plane wave 
VASP64–66 code, where electron–ion interaction was 
represented by the projector augmented wave 
pseudopotential. The exchange-correlation functional utilized 
was the spin-polarized GGA-PBE67,68. The kinetic energy cutoff 
was set at 450 eV. The first Brillion zone k-point sampling utilized 
the Gamma-centered mesh grid. The energy and force criterion 
for convergence of the electron density and structure 
optimization were set at 10−5 eV and 0.05 eV Å−1, respectively. 
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