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Abstract 

Atomic simulation is becoming a vital tool in modern science, bridging the gap between 

theory and experiments. Since its birth in 1950s, the balance between accuracy and speed 

has been the main theme in simulating atomic world and in recent years machine learning 

potential based methods emerged as a promising alternative to density functional theory 

calculations for exploring complex potential energy surface (PES). Here we report our im-

plementation of LASPAI (www.laspai.com), a web-based platform for future atomic sim-

ulations, which is built using the generalized global neural network potential for fast PES 

evaluation as implemented in LASP software, together with a series of general diffusion 

generative models, stochastic surface walking (SSW) global optimization, and other com-

mon simulation tools for the PES exploration of molecules and materials. We show that 

LASPAI platform offers a task-orientated, user-friendly, web-based graphical user inter-

face (GUI) to greatly simplify and speed-up atomic simulations for a wide range of scien-

tific areas, ranging from molecule and material structure prediction to solid-gas, solid-

liquid, solid-solid interface identification, and reaction pathway simulations. It aims to 

provide a fast chemical knowledge delivery for scientists to design new materials and re-

actions.  

Keywords: atomic simulation, generative model, global machine learning potential, 

LASPAI platform 

1 Introduction 

Atomic simulation is an indispensable tool in modern chemistry, physics, and materials 

science, offering a microscopic view into the atomic interactions that govern material 

properties1–4. Historically, a significant challenge in this field has been the trade-off be-

tween the accuracy and the speed, which is generally manifested by the computational 

cost1,5,6. Recently, machine learning potentials (MLPs) have emerged as a transformative 
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approach to overcome this accuracy-efficiency dilemma with highly flexible surrogate 

models trained to directly learn the high-dimensional quantum mechanical potential en-

ergy surface (PES) from extensive databases of reference quantum mechanics (QM) cal-

culations7–12. Since the first report of Behler-Parrinello Neural Network (BPNN)9, many 

different MLP models were developed, to name a few representatives, the BPNN-derived 

models such as many-body function corrected neural network (MBNN)13 implemented in 

our LASP program and deep potential14,15, Gaussian Approximation Potentials (GAP)8,16, 

Message Passing Neural Networks (MPNNs)17,18, and various Equivariant Graph Neural 

Networks (EGNNs)19 potentials such as PaiNN20, Allegro21 and MACE22 emerged in recent 

years. The advent of MLPs enables long-time atomic simulations at high accuracy for the 

tasks using molecular dynamics (MD)23–25 and global PES exploration26, where DFT calcu-

lations are struggled to achieve enough sampling for the PES. 

One of the major concerns of MLPs is the transferability and generality of the model. For 

example, DFT calculations can readily cover the whole periodic table but MLPs are gener-

ally limited to a few chemical elements of the training dataset. A few general-purpose 

MLPs emerged in recent years, including CHGNET27 and DPA family28–30 , which were 

trained on open datasets and lack the great PES data variety. By developing LASP software 

and global PES exploration methods, our group has accumulated a large quantity of global 

PES dataset in the past 20 years, which leads to the development of the High-order Pair-

reduced Neural Network (HPNN) architecture31 and the generalized global neural net-

work (GGNN) potential that was trained on more than 6.4 million global PES dataset cov-

ering 89 elements. It allows for the first time the simulation of diverse systems without 

additional training while keeping the cost for simulation low. The success of GGNN en-

courages us to establish the LASPAI platform to deliver fast and reliable atomic simulation 

for everyone. 

A generalized global neural network potential is not enough to achieve the general-pur-

pose atomic simulation: one biggest challenge is how to transform the chemical 

knowledge/language into 3-D atomic models. This is where the recently-developed deep 

generative models32–37 can come into help. Pioneering frameworks, particularly diffusion 

generative models (DGMs) have demonstrated success in generating conformations for 

small organic molecules and inorganic crystals within 20 atoms. For example, the diffu-

sion-based models as represented by GeoDiff offer a fast and cost-effective route for gen-

erating three-dimensional (3D) molecular structures directly from two-dimensional (2D) 

molecular graphs38–42 based on SchNet spatial encoder and Graph Isomorphism Network 

(GIN)43 message passing38,41. One step further, the OA-ReactDiff model44 utilizes a SE(3) 

equivariant neural network by training the Transition1x database45, resulting in transi-

tion state (TS) generation for gas phase reactions based on the initial and final state. How-

ever, these models suffer from high time complexity due to the O(N2) computational com-

plexity of full connected graphs, hindering the scalability of the model. Recently, by using 

the same High-order Pair-reduced network but further incorporating edge and time in-

formation (HPNN-ET), we managed to directly generate 3D structures of initial state (IS), 

TS and final state (FS) from 2D molecular graphs with high accuracy and high speed. This 
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leads to a Bootstrapping Diffusion Generative Model coupled with Potential Energy Sur-

face (BDGM-PES) method46 to explore automatedly the reaction space via a self-regres-

sive pipeline with the integration of single-ended TS searching algorithm47. 

Given the powerful PES evaluation from GGNN potential and the 3D structure genera-

tion of HPNN-ET, we started to establish the LASPAI platform in the early of 2025. Our 

aim is to design a user-friendly, web-based portal to democratize access to advanced 

atomic simulations. LASPAI functions as an intuitive GUI for the LASP engine and expands 

its capabilities with task-oriented modules. By operating entirely within a standard web 

browser, it eliminates all setup and maintenance overhead for the end-user, requiring no 

compiling, installation, or configuration files. The platform’s interactive GUI enables re-

searchers not only to launch calculations with a few clicks but also to visualize, rotate, and 

modify molecular structures in real-time, fostering a more intuitive research process. By 

abstracting complex command-line syntax and system administration tasks, LASPAI em-

powers experimental scientists to directly apply the predictive power of computational 

chemistry to their work, thereby accelerating discovery and promoting a more integrated 

approach to scientific research. In the following sections, we overview the theoretical 

foundation of LASPAI platform and introduce briefly the major functionalities. 

2 Theoretical foundation 

LASPAI platform equips with many machine learning models, including the GGNN po-

tential for evaluation PES and a few generative models structure generation. These mod-

els cooperate seamlessly to achieve a high efficiency workflow towards sophisticated 

atomic simulation tasks. Despite different purposes of these machine learning models, all 

of them are related to high-order pair-reduced neural network architecture, i.e. HPNN, as 

elaborated in Figure 1. 

Figure 1. The HPNN architecture for (a) PES evaluation (generalized global neural network) and 

(b) structure generation (diffusion generative models). The figures are extracted from works by 

Yang et al.31 and Guo et al. 46 respectively. 
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2.1 PES evaluation 

HPNN31, as shown in Figure 1a, incorporates high-order spherical harmonics up to 𝑙=6 

without using computationally intensive Clebsch-Gordan (CG) tensor product48. Instead 

of performing a single, complex tensor product, HPNN uses a series of three interaction 

layers, each of which incorporates spherical harmonics of different orders in a hierar-

chical fashion. The first layer uses the highest order (𝑙ℎ = 6) to capture fine-grained local 

geometric details. Subsequent layers use progressively lower orders (𝑙 = 4 and 𝑙 = 2) to 

aggregate more global, non-local information. A crucial element for efficiency is the re-

duction of the dimensionality of atomic features before they enter the pair-based message 

passing operation. The feature dimension is shrunk by a linear layer and then restored 

after the operation is complete. This significantly reduces the computational load of the 

most expensive part of the calculation without compromising the model's overall param-

eter space, as subsequent operations are performed on the full-dimension features. The 

message passing is formulated as a Hadamard product (element-wise multiplication) of 

the reduced-dimensional atomic features, followed by an outer product with individual 

spherical harmonics. The resulting angular messages are then transformed into a scalar 

representation and concatenated. This simpler approach achieves a linear computational 

complexity related to spherical harmonics, making it feasible to include very high orders 

(up to l=6). By combining these features, the HPNN model creates a lightweight yet pow-

erful architecture capable of learning from a vast and complex global PES dataset. The 

HPNN architecture was initially trained on a massive dataset of 5.84 million configura-

tions covering 83 elements that now expands to 6.4 million configurations covering 89 

elements for LASPAI platform service, achieving a balance of high accuracy and high speed 

with a great generality for periodic table elements that was previously unattainable. The 

dataset was obtained by plane wave DFT calculations with GGA-PBE functional. The 

model reaches the root-mean-square errors of 7.3 meV/atom for energy and 0.16 eV/Å 

for force. To better account for the van der Waals interaction, we also implemented a 

highly efficient DFT-D3 algorithm on GPU platform, which allows for fast dispersion en-

ergy and force evaluation for large systems up to 100,000,000 atoms on a single Nvidia 

RTX 4090 GPU. 

2.2 Automated Structure Generation  

Our general generative model is based on HPNN-ET, which is a SE(3)-equivariant ma-

chine-learning model for generating 3D structures from molecular graph. HPNN-ET fol-

lows HPNN architecture in collecting the message between nodes (atoms). The model46 is 

shown in Figure 1b. The input of HPNN-ET takes all available molecular information in-

cluding atomic properties, bond connectivity from the 2D graph, interatomic distances, 

and temporal data from the diffusion process into a single, unified model. This allows it to 

efficiently process and learn from diverse data streams. The model uses high-order spher-

ical harmonics to achieve more sensitive and accurate discrimination against the spatial 

arrangement of atoms, which is crucial for generating a large variety of complex geome-

tries with high precision. The HPNN-ET model processes input by first embedding atomic 

and pairwise interaction data. This information is then updated through a series of high-

order pair-reduced layers that perform message passing between atoms. Similar to our 
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HPNN model, the generative model reduces the feature dimension during the computa-

tionally intensive pairwise operations, which significantly enhances efficiency without 

sacrificing the model's overall complexity or accuracy. This allows the model to generate 

large molecules (over 100 atoms) with exceptional precision (less than 0.05 Å error) and 

speed. By combining this powerful generative model with machine learning potential for 

exploring the reaction's energy landscape, the HPNN-ET framework can generate reaction 

pathways autonomously, including intermediate and transition states, for complex cata-

lytic systems. 

LASPAI now includes 5 generative models, all derived from HPNN-ET architecture, but 

each aims for different tasks. Here we list the functionality, the dataset size and the effi-

ciency of these five models. 

i. Molecule generation 

The molecule model generates 3D structures of molecules from molecular graph. 

The model was trained on a dataset of 437,952 molecules, including structures 

screened from PubChem database and drug-like molecules obtained from GEOM-

DRUG49 together with structures for organometallic catalytic reactions50. The mol-

ecule generation takes generally less than 15 seconds, e.g. large organic molecules 

with 40 atoms taking about 8 seconds. 

ii. Solid generation 

The solid model generates 3D structure of inorganic crystals from chemical for-

mulas. It was trained on a large dataset containing over 682,637 structures, includ-

ing 45,231 experimentally verified stable inorganic crystal structures with up to 20 

atoms from Materials Project51,52 and the rest from Alex-MP20 dataset provided by 

MatterGen53. The model can generate large structures containing 1000 atoms 

within merely 20 seconds. 

iii. Molecular crystal generation 

The molecular crystal model generates 3D structure of molecular crystals from 

molecule SMILES names. The rdkit54 is used to obtain the connectivity between at-

oms. The generation process mixes the molecule generation and solid generation 

algorithm, adding embedded connectivity information during the message passing 

process. The connectivity is calculated in real-time during training process to guar-

antee correctness for molecules at the edge of the cells. It was trained on 320,000 

molecular crystals from literature55–62. The model can generate a large cubic mo-

lecular crystal with 720 atoms and 10% occupation ratio in 21 seconds. 

iv. Molecules inside cages 

A derived generative model based on the molecular crystal model is developed 

to fill molecules inside cages. This is achieved by modifying the atom initialization 

process, where the Voronoi algorithm first identifies the cage region and the initial 

atom coordinates are restricted in a cubic region at the center of the cage. The in-

ference process is then performed for the newly added molecules while fixing the 

cage atoms. The model can generate three candidate structures of water molecules 

inside an AlPO4 zeolite cage of 288 atoms in 20 seconds. 

v. Reaction generation 
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The reaction generation model generates TS structures of reactions from the IS 

or FS structures. The initial training dataset is based on the dataset for the molecule 

generation. To better predict the TS, we utilize an iterative procedure to train the 

reaction generation model. First, additional constraints to reaction atoms, i.e. the 

distance between these atoms, are applied to generate the guessed TS. Constrained 

Broyden Dimer (CBD) algorithm47,63 is then utilized to find the TS structure on the 

GGNN PES. The reaction model is retrained by adding these newly identified TS 

structures. The TS structure of ~ 40-atom organic reaction system can be gener-

ated within 10 seconds. 

3 Architecture and workflow 

3.1 Web-based architecture 

LASPAI platform is realized on a frontend on the web browser served by a backend 

workstation, each playing a crucial role in delivering seamless user experience for atomic 

simulation. The LASPAI architecture is shown in Figure 2. The frontend comprises various 

integrated components, including essential elements like headers and sidebars, along 

with the specialized visualization components. It is specifically designed for graphic in-

teractive structure generation and simulation, taking the chemical language from human 

via sophisticated graphic software, such as ketcher64 for molecular graph input, 3dmol65 

for 3D structure visualization and house-developed LASPView for 3D structure operation. 

Each functionality operates as a single-page application (SPA), and the platform ensures 

that the navigation between different pages occurs smoothly without the need to reload 

Figure 2. The architecture and user workflow of LASPAI website. The blue and green dotted box 

shows the architecture of the backend and frontend, respectively. 
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the whole browser. The communication between the frontend and the backend is facili-

tated through asynchronous HTTP requests that achieve an efficient data exchange. 

The backend, hosted on a remote server, is responsible for processing requests initiated 

by the user. Upon receiving a request, it validates the provided parameters and subse-

quently creates a pending new task entry. This streamlined approach to backend opera-

tions is designed to provide instant feedback to users, preventing any perceived delays or 

the website from becoming unresponsive. Concurrently, independent worker processes 

are continuously listening to new pending tasks. Once a worker identifies a pending task, 

it invokes pre-compiled, high-performance LASP program and projects including pho-

nonpy66, rdkit54, ase67, pymatgen68 and packmol69 to execute the required computational 

task. Throughout this process, the workers periodically update the task’s status to the 

backend, which in turn relays this information to the frontend, ultimately presenting the 

status to the user. After a task is successfully completed, the worker process marks it as 

complete, and both the backend and frontend, through application programming inter-

face (API) endpoint polling, update this status information to the user, providing a com-

prehensive overview of their simulation progress. 

LASPAI platform has four main modules, namely the GGNN potential module, the gen-

eration module, the reaction module and the cloud computing module, each module con-

tains a few independent web pages. The GGNN potential module provides four function-

alities arranged into four pages, including single point energy calculations, (variable-cell) 

structure optimization, PES exploration trajectories, solid phonon and vibrational fre-

quency calculations. These can be utilized to fast validate the performance of GGNN po-

tential, from energy to the second derivative of energy, on user-provided structures.  

The generation module equipped with various structure generation algorithms and 

general generative models can generate a wide range of structures, which are arranged 

into 11 pages, including molecules, molecular crystal, solid, polymers, nanoparticles, crys-

tals and surfaces, interfaces, structure filling (e.g. solutions and molecules inside cages) 

and preequilibrium. Preequilibrium simulations are utilized to run short-time molecular 

dynamics and global optimization for these as-generated structures.  

The reaction module aims to identify the TS of molecular reactions, surface reactions 

and solid-solid phase transition from different initial structures, such as molecular graph, 

guessed TS structure, IS and FS structures. The cloud computing module provides graphic 

interfaces to run long simulation jobs for global optimization, MD simulation, TS location 

and electron structure calculation. All web pages utilize modern web-based architecture 

and the task-oriented page layout to maximumly simplify the procedure of atomic simu-

lation. 

3.2 Workflow of Simulation 

LASPAI platform aims to offer a simple and continuous workflow of atomic simulations 

for both experienced computational chemists and nonprofessionals. In most cases, users 

simply need to specify the chemical formula or draw the molecule graph to initiate simu-

lations. Throughout the simulation process, the website provides intuitive, real-time re-
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sults, allowing for easy viewing and analysis of structures and idea proofing. Here we il-

lustrate the website's workflow using a common scenario, i.e. to build a composite struc-

ture and perform molecular dynamics to validate the constructed model.  

Multiple-component composite systems, such as mixed solutions, solid-solid-interfaces, 

are prevalent in material world. However, constructing a desired and physically meaning-

ful composite structure is often challenging due to their multi-component and non-stand-

ard nature. LASPAI provides a four-step workflow to solve this challenge, namely, struc-

ture construction, local optimization, preequilibrium and cloud computing, where the 

first three steps can be finished conveniently on the LASPAI platform and the final pro-

duction step is achieved by submitting the task to a remote supercomputer. 

The structure filling page is the main tool to address the challenge of composite gener-

ation. Currently, this page can process solid-liquid interfaces, liquid-liquid mixtures, solu-

tions, and molecules within caged materials. By specifying the components, the desired 

composite structures can be generated by mouse clicking. These structures can then be 

finely modified and locally optimized using LASP, providing an ideal starting point for 

subsequent atomic simulations. By sending the constructed composite structure to 

preequilibrium page, one can then perform SSW global optimization and MD simulations 

directly. A GUI is provided to directly view the structure together with the input boxes to 

set the initial settings of simulation. After the simulation task is finished, the user can view 

the result and the trajectory of the simulation. Taking the preequilibrated structure, users 

may further perform cloud computing for long-time simulations, which could finally pro-

duce the concerned physiochemical properties. 

4 Examples of LASPAI 

LASPAI can streamline a variety of sophisticated simulation tasks by combining the el-

ementary functions with different pages. The prerequisites for computational experience 

and simulation knowledge are maximally reduced, including the code/script writing, pro-

gram switching, manual file transfers, and invoking external visualization tools as re-

quired in traditional atomic simulation. Leveraging the power of LASP software, genera-

tive models and LASPAI workflow, the platform offers a simple, intuitive, fast, and precise 

experience towards the future of atomic simulation. 
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4.1 Solid structure prediction 

One important feature of LASPAI is its AI-powered structure generation. It allows users 

to generate solid structures with the least information input, making it particularly effec-

tive for predicting solid structures with complex PES. Taking TiO2 as an example, we illus-

trate how LASPAI can predict the crystal structure of TiO2. TiO2, as an important material, 

is widely used in many fields. It primarily exhibits two stable crystal structures: rutile and 

anatase70, with space groups 𝑃42/𝑚𝑛𝑚 and 𝐼41/𝑎𝑚𝑑, respectively. The transition be-

tween these two crystal phases occurs above 800 K, suggesting a relatively high barrier 

of phase transition 71. By utilizing the solid generation page on LASPAI, we can obtain their 

crystal structures and assess their relative stability.  

To start, we simply specify the chemical formula “TiO2” on the page and specify the 

number of atoms per cell as random. Other specifications of the generation like the lattice 

and occupation ratio parameters are optional. With three iterations of generation (click-

ing three times generation button), we obtain a list of generated structures, the top-

ranked ones among which are shown in Figure 3a. The first two structures in the list share 

identical space groups with rutile and anatase, and by viewing their atomic structure, as 

shown in Figure 3b and c, we confirm that the generated structures correspond to these 

two stable crystal forms. It should be mentioned that traditional PES algorithms would 

require significantly more time to explore the structures of TiO2
23. With the aid of our 

generative model and the GGNN PES evaluation, it is now possible to obtain stable solid 

structures conveniently and visualize them intuitively, thereby significantly enhancing 

the material design. Each generation takes about 20 seconds and produces around 10 

Figure 3. The generation of different polymorphs of TiO2 using the solid generation page. (a) The 

list of generated TiO2 structures sorted by unit energy. (b) and (c) are the first and second entries 

in (a), corresponding to the generated and optimized structures of anatase and rutile, respectively. 

The red and grey spheres represent O and Ti atoms, respectively. 
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structures. It takes approximately 1 minute in total to identify the rutile and anatase 

phases from scratch. 

4.2 Adsorption structure prediction 

Adsorption is a fundamental process for molecule interaction with materials. LASPAI 

platform facilitates rapid exploration of molecular adsorption on surfaces. To give an ex-

ample, we show how LASPAI can rapidly predict the pyridine adsorption on a γ-Al2O3 

surface. The pyridine adsorption is a well-established probe reaction in surface chemistry 

for identifying surface acidic sites through characteristic peaks in infrared spectroscopy. 

The workflow of this adsorption task is shown in Figure 4a. It involves four pages from 

the generation module, namely the molecule generation page, the solid generation page, 

the surface cutting page and the adsorption generation page. The initial bulk structure 

may come from several sources, e.g. our solid generative model, the database of crystal 

structures and custom input structures. 

For 𝛾-Al2O3, we adopt the 𝛾-AD model suggested by Yang et al72 (Figure 4b) and its 

(512) facets is shown in Figure 4c, corresponding to the conventional (110) facet of 𝛾-

Al2O3 using O-sublattice. To start, we upload the 𝛾-AD structure on the surface page and 

cut the (512) slab; the pyridine molecule is also generated and optimized on the molecule 

page. Both the slab structure and the molecule are then transferred to the adsorption page. 

After the adsorption generation, a list of adsorption structures is obtained and the most 

stable is shown in Figure 4d, where the adsorption energy is reported to be 2.11 eV. The 

pyridine molecule bonds with the Lewis acid site (Al) via its N-end in a vertical configura-

tion with the N-Al bond length of 1.97 Å. Subsequent vibrational frequency analysis, also 

available on the adsorption page, reveals a characteristic ring stretching mode at 1491 

Figure 4. The adsorption of pyridine on 𝛾-Al2O3. (a) The workflow of adsorption study in LASPAI. 

(b) The minimum 𝛾-Al2O3 (𝛾-AD) structure found by Yang et al.72 (c) The (512) facet of 𝛾-AD struc-

ture, corresponding to (110) facet of 𝛾-Al2O3. (d) The generated adsorption structure of pyridine on 

Al2O3. The white, grey, blue, red and pink spheres represent H, C, N, O and Al atoms, respectively. 
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cm-1, corresponding to the v19a frequency73, red-shifted by 10 cm-1 compared to the gas 

phase pyridine74. This computed frequency is well consistent with experimental results 

reported by Phung et al.75 of 1490 cm-1. 

The molecule generation takes 5 seconds from molecular graph to 3D structure. Surface 

cutting and optimization takes less than 10 seconds, and the adsorption structure gener-

ation takes around 25 seconds for one iteration. The frequency analysis takes less than 30 

seconds. The whole procedure takes approximately 70 seconds. 

4.3 Liquid phase separation 

Liquid phase separation is a common experimental operation in chemistry laboratory. 

The separation of two phases from a mixed solution can be simulated through long-time 

MD simulations. As summarized in Figure 5a, LASPAI platform offers a convenient work-

flow to finish the simulation task by simply specifying the chemical formulas of the solvent 

and solute as input. This process involves four LASPAI pages included in the generation 

module and cloud computing module, namely the molecule crystal generation, the filling, 

the preequilibrium and the molecular dynamics page in cloud computing. 

Taking the phase separation between water and carbon disulfide (CS2) as an example, 

we can first generate the mixture as molecular crystal by specifying the molecular graphs 

of the two molecules and the best molecular crystal obtained is shown in Figure 5b, which 

already tells the weak interaction between two molecules from the long distance separa-

tion of the two molecules. This molecular crystal structure is then transferred to the filling 

Figure 5. Atomic simulation of oil/water phase separation. (a) The workflow for performing phase 

separation simulation on LASPAI. (b) The generated 1:1 molecular crystal of water and CS2. (c) The 

1:1 mixed starting solution structure. (d) The structure after MD simulation with the two phases 

separated. The white, grey, red and yellow spheres represent H, C, O and S atoms, respectively. 
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page to populate a large cell with the two molecules. The resulting structure, as shown in 

Figure 5c, is a large solution system comprising 1086 atoms, with 181 water molecules 

and 181 CS2 molecules. A preequilibrium using MD simulation of ~ 2.5 picoseconds is then 

performed on the solution mixture. After preequilibrium, the volume of the system 

shrinks from 33,072 Å3 to 30,058 Å3, resulting in a more stable mixture of water and CS2 

with density of 0.94 g/cm3. This structure is taken as the starting structure for long-time 

MD simulation by submitting the task to the cloud computing platform and the task fin-

ishes until a total simulation time of 320 picoseconds is reached. Both the preequilibrium 

and MD simulation process is performed under the constant-pressure-temperature (NPT) 

ensemble at 300 K, with a time step of 0.5 femtoseconds. The MD simulation process can 

be monitored on the website, and the structures during the simulation can be viewed di-

rectly. As shown in Figure 5d, the separation of the water and CS2 phases is clearly re-

vealed by MD, in agreement with the known immiscibility of water and CS2. 

The generation of the molecular crystal takes about 40 seconds, and the filling proce-

dure takes approximately 20 seconds to build the solution cell. The preequilibrium pro-

cess takes 175 seconds, and the final long-time MD simulation takes 15 hours and 18 

minutes. 

5 Conclusion and Outlook 

This work overviews the architecture and workflow of our recently-released LASPAI 

platform (www.laspai.com) born for the next-generation atomic simulation, which inte-

grates a user-friendly web frontend and a powerful backend server equipped with the 

latest generalized global MLP (GGNN) and the general generative models. We introduced 

the theoretical foundation of LASPAI, the interactive web GUI with its backend server, the 

workflow and finally presented three examples finished by LASPAI, from crystal structure 

prediction to molecular adsorption and to liquid-phase separation. We show that with the 

help of generalized MLP and the powerful generative model, LASPAI expands greatly the 

frontier of atomic simulation, not only being more convenient and autonomous, but also 

being more intelligent towards material and molecule design from first principles. While 

there are still many ongoing projects of LASPAI, e.g. polymer modelling, lattice thermal 

conductivity computation, GGNN fine-tuning and the combination of force-field potentials 

with GGNN, the next major move of LASPAI will be the integration of large language model 

to drive the LASPAI tools, facilitating higher degrees of automation and intelligence. We 

believe that by abstracting complex command-line syntax and deep knowledge on com-

putation methodology, LASPAI empowers all areas of science students and researchers to 

directly exploit the predictive power of computational chemistry, thereby accelerating 

discovery and promoting AI-integrated modern scientific research. 
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Figure 1. The HPNN architecture for (a) PES evaluation (generalized global neural network) and 

(b) structure generation (diffusion generative models). The figures are extracted from works by 

Yang et al.31 and Guo et al. 46 respectively. 

 

Figure 2. The architecture and user workflow of LASPAI website. The blue and green dotted box 

shows the architecture of the backend and frontend, respectively. 

 

Figure 3. The generation of different polymorphs of TiO2 using the solid generation page. (a) The 

list of generated TiO2 structures sorted by unit energy. (b) and (c) are the first and second entries 

in (a), corresponding to the generated and optimized structures of anatase and rutile, respectively. 

The red and grey spheres represent O and Ti atoms, respectively. 
 

Figure 4. The adsorption of pyridine on 𝛾-Al2O3. (a) The workflow of adsorption study in LASPAI. 

(b) The minimum 𝛾-Al2O3 (𝛾-AD) structure found by Yang et al.72 (c) The (512) facet of 𝛾-AD 

structure, corresponding to (110) facet of 𝛾 -Al2O3. (d) The generated adsorption structure of 

pyridine on Al2O3. The white, grey, blue, red and pink spheres represent H, C, N, O and Al atoms, 

respectively. 

 

Figure 5. Atomic simulation of oil/water phase separation. (a) The workflow for performing 

phase separation simulation on LASPAI. (b) The generated 1:1 molecular crystal of water and CS2. 

(c) The 1:1 mixed starting solution structure. (d) The structure after MD simulation with the two 

phases separated. The white, grey, red and yellow spheres represent H, C, O and S atoms, 

respectively. 
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