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Abstract: A local hybrid divide-and-conquer method (LHDC) which combines the high accuracy
of sophisticated wave function theory (WFT) methods and the low cost of density functional
theory (DFT) has been proposed for computational studies of medium and large molecules. In
the method, a large system is divided into small subsystems for which the coefficients of the
exchange functional in a hybrid functional are first optimized according to the energy calculated
by an accurate WFT method. The hybrid coefficients are then used to evaluate the energy of
the whole system. The method not only can reproduce the total energies of the chosen WFT
method in good accuracy but also provides electronic structure information for the entire system.

1. Introduction

With rapid developing theoretical techniques, it is becoming
straightforward to perform electronic structure calculations
for many complicated systems. Wave function theory (WFT)
methods, such as Hartree—Fock (HF) and post-HF methods,
in principle are capable of systematic convergence to the
exact solution of the Schrédinger equation for a given system.
For the small molecules, high level WFT methods in
conjunction with a large basis set have proved to be capable
of achieving chemical accuracy.' However, for medium and
large systems consisting of several hundreds or thousands
of atoms conventional WFT methods are still too expensive.
To reduce computational costs, new strategies such as linear
scaling methods,> ® have attracted much attention. By
utilizing the locality of the physical properties™® or the
nearsightedness of electrons,” the computational costs of
these methods promise to scale almost linearly with the size
of the system instead of the conventional O(N?) or higher.
Among these linear scaling methods, the divide-and-conquer
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(DC) method originally proposed for density functional
methods® has become popular in the chemistry community.”

Recently, a simple and easy to implement DC method, an
energy-based DC method (EDC)’~'* has been proposed. The
basic idea of the method is to divide a large system (entire
system, ES) into small subsystems. The energy of the ES is
then expanded into a sum of many-body terms where the
two-, three-, and higher-body correction terms are coupling
terms between the subsystems. Since a subsystem within the
large system is different from the isolated one, it is important
to include the effect of the surrounding environment (i.e.,
the coupling between the subsystems) when considering the
subsystems. The higher accuracy desired, the higher-body
correction terms are needed. However, including more
higher-body correction terms will greatly increase compu-
tational cost, especially for highly accurate WFT methods
such as the CCSD(T) method, and the linear-scaling of the
method no longer holds. One drawback of the EDC method
is that it does not provide information on the electronic
structure of the ES since it operates only on the energy of
the subsystems.

Density functional theory (DFT) methods can be applied
to medium and large systems with moderate computational
costs.'* Many useful functionals have been developed in the
past two decades.'®!” Hybrid DFT methods, which are
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developed based on the adiabatic connection formula'®~2

and incorporate a fraction of exact exchange, are the most
successful DFT methods to date. However, the challenge to
DFT methods is that the exact exchange-correlation func-
tional is unknown and has to be approximated. Unlike WFT
methods, there is currently no systematic way to guarantee
that DFT methods can converge to right answer. DFT
methods still have some major drawbacks compared to
conventional WFT methods, such as in the treatment of left-
right correlation, van der Waals interactions, and m-7T
stacking.'®

Since both approaches, the WFT and DFT methods, have
their merits and drawbacks, it is desirable to combine the
merits of the two approaches. Ab initio DFT**~*° and
Gorling-Levy perturbation theory?®™2® are the two such
approaches. In the present research, we propose a novel DC
approach which combines the accuracy of high-level cor-
relation methods with the low cost of DFT methods based
on the adiabatic connection formula. In this approach, an
ES is first divided into several subsystems. Then the fraction
() of the local DFT exchange (ELSP) in a hybrid DFT
functional is optimized with respect to the energy of each
subsystem (local region) evaluated by a highly accurate WFT
method. These 5 values (the local hybrid (LH) coefficients)
are then further refined, by incorporating couplings between
the subsystems, and then used to compute the energy of the
ES. The new approach not only can reproduce energy profiles
of the highly accurate WFT method to high accuracy but
also can provide electronic structure information such as
charge distributions, where such analyses with highly ac-
curate WFT methods are prohibitive.

2. Methodology

The design of hybrid DFT functionals is based on consid-
eration of the adiabatic connection formula,'® 2> which
connects the Kohn—Sham noninteracting reference system
to the full-interacting physical system

1
E. = [ U.di (1)

where E,. is the exchange correlation energy, A is an
interelectronic coupling-strength parameter, and U, is the
exchange-correlation potential energy at an intermediate
coupling strength A. In Becke’s half-and-half theory,?* Ey
is approximated as the average of the E,. of the noninter-
acting system (EZ2° = EP¥Y) and that of the full interacting
system (El! ~ ESP), ie.
1
E. = E(Efxact + ESP) 2)
The B3LYP hybrid functional,?® perhaps the most popular
DFT functional, as implemented in Gaussian 03,3 has the
following form:'®
E.=aEX* + nESP + a AEP® 4+ (1 — a)EY VN R +

a AEXT (3)

In eq 3, ay is the coefficient of the exact exchange energy
ER4 5 is the coefficient of the exchange energy under the
local spin density (LSD) approximation EXP2; # is usually
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taken as (1—ay); ay is the coefficient of the gradient correction
part (E%3®) of the B88 exchange functional; (1—a.) and a.
are the coefficients of VWN?' LSD correlation energy
EYWVN-RPA and the gradient correction part of LYP correlation
functional AEEY?,*? respectively. The parameters ag, ay, and
a. are those used in the B3PW91 functional,*® in which they
are determined empirically by fitting to a set of accurate
thermodynamics data. Similar to the B3LYP functional, in
most hybrid functionals only a fraction of EF**! is included
(i.e., mixed with E-SP) in E,.. Usually, the mixing coefficient
ay is fitted empirically to a set of accurate thermodynamics
data and is then fixed for applications to all systems. Thus,
the coefficient ag is universal in this limited sense. However,
because ELSP and other exchange correlation functionals used
in the hybrid functionals are all approximate functionals, if
we know the exact solution of the Schrodinger equation and
thus the exact E,., one would immediately see that the mixing
coefficient and also other parameters such as ay and a. in
the B3LYP functional must be system dependent and are
probably different in the various regions of a system, i.e.
dependent on r.>* Thus, the mixing coefficient is not truly
universal. Ideally, the mixing coefficient should be deter-
mined according to the property of each system.*

In principle, if the exact Ey. of a system is known, a
coefficient in the hybrid functionals can be solved by fixing
other coefficients. Since E,. is unknown except for a few
model systems, one can use E,. obtained from highly accurate
WFT methods, which can be improved by incorporating
more correlation and enlarging basis set. Therefore, in the
present work, an ES is divided into several subsystems for
which a highly accurate WFT method, for example
CCSD(T),***7 is applicable. The energy of each isolated
subsystem (called monomer hereafter) is then computed. We
fix all but one coefficient (typically a;), by solving, if the
B3LYP functional is selected, the following equation
ENFT = g BBt E;SD +aA Efss +(1-a) EVWN-RPA

a AEXT (4)

In (4) EYFT is the exchange-correlation energy calculated by
the accurate WFT method, and an a, value for a monomer
is then obtained. It should be noted that since electron density
depends on a, and EE¥* and other energy terms thus depend
implicitly on ay, ay has to be solved iteratively.

In the current study we choose B3LYP as the example
functional in our local hybrid DC method (LHDC), since
B3LYP is widely used and it is well-known that B3LYP
(and most other DFT functionals) fails for long-range
interactions such as sr-7r stacking, which is very important
in biomolecules. For the accurate WFT method, the CCSD(T)
method is employed. In the B3LYP functional, we choose
7 to be varied since the exchange energy is much more
important than the correlation energy.*®*° Conventionally
7 is fixed to be 1 — gy to fulfill the uniform electron gas
(UEG) limit, but in molecular systems it was found in
practice that violation of such constraint still gives promising
results, for example in the O3LYP functional.*® On the other
hand, usually 20%—25% (ay) of the exact exchange is
included in hybrid functionals.***' Therefore, we will fix
ap to be 0.20, a, to be 0.72, a. to be 0.81, and vary # using
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0.80 as an initial guess. Our preliminary tests show that
varying # instead of varying a, with the constraint of = 1
— ap actually gives slightly better results. Further, better
numerical stability is found when iteratively solving for the
mixing coefficient (i.e., # or ao) using eq 4.

In the EDC method,” ' the total energy of an ES is
expanded as

M M
Es=y E=) (E"+AEP+AE)+ )

1

M
o_1 0 _ {0 | 0
AEP =35 [E) = (E” + E7)]

JEi

ijk

M
3 _ 1 0 0 0 0
AEY =3 % LER — (B +EY + E) =

k=i

(E"+E”+EM] (5)

where E; is the energy of a subsystem in the ES environment,
E is the energy of a monomer, AE{? and AE® are second-
order and third-order corrections to E{” (due to the couplings
between two monomers and three monomers, respectively),
and M is the number of subsystems. By analogy to eq 5, the
1 value of a subsystem (local 77) embedded in the ES
environment may be expressed as

1=+ Ar A ©

where 7(” is the # value of a monomer determined iteratively
as described above. As energy is an extensive thermodynamic
variable while the hybrid coefficient # is an intensive one,
the expressions for Ay® and Ay are slightly different from
those for AE® and AE®

M

AnP =Y (= n”) (7)
JE
M
AP =3 [ng = o+ i)+ ®)
je22

where 71 is the 7 value of two subsystems determined in
the same way as for a monomer. For example, in eq 4 all
the energy terms used are calculated for two subsystems in
a whole as a bigger isolated subsystem (named dimer
hereafter). The use of the above expressions for An{® and
A is to guarantee that if no truncation is applied to eq 6,
the 7; given by eq 6 is exactly the # of the ES to fulfill the
condition that # is an intensive variable.

Once all the local n values are determined, a DFT
calculation is performed for the ES to solve the Kohn—Sham
equation with these new # values. Since the matrix elements
of the exchange-correlation potential v, are evaluated in
finite basis sets, when calculating element <¢,|v, l¢,> where
¢, and ¢, are atomic orbitals belonging to different sub-
systems i and j, an average value of n, i.e. (1, + 1,)/2 is
used. Finally, the total energy and the Kohn—Sham wave
function of the system are obtained.

Eq 6 is exact in reproducing the energy calculated by the
accurate WFT method if all correction terms up to M™ order
are included. In practical usage, eq 6 has to be truncated.
To further reduce computational costs, contributions from
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Figure 1. Error (relative energy to the full CCSD(T) energy,
in mhartree) of the LHDC2(B3LYP:CCSD(T)) method for the
longer straight-chain alkanes under three partition schemes
(see text for details).

some dimers, trimers (three subsystems calculated in a
whole),..., and m-mers consisting of far apart subsystems may
be neglected. In the present work, the sum in eq 6 only
includes contributions from those dimers, trimers,..., and
m-mers in which subsystems are connected through chemical
bonds (neighboring subsystems). Three different truncation
schemes have been investigated, where 7 is corrected to
zeroth order, second order, and third order by eq 6,
respectively. It should be noted that for the conventional EDC
method, there is no zeroth order method for systems that
must be divided by cutting through a chemical bond, since
the contributions from cap atoms cannot be canceled out in
eq 5.

The model systems selected to test our LHDC methods
are three straight-chain alkanes, two fully conjugated straight-
chain alkenes, and the benzene dimer. The nomenclature of
the new method is LHDCr(DFT:WFT) in which n (= 0, 2,
3...) represents the truncation order in eq 6, DFT represents
the hybrid functional used, and WFT represents the WFT
method used. In the current research, DFT is B3LYP and
WEFT is CCSD(T). To divide ES into subsystems, one may
cut through chemical bonds. In such a case, the broken bond
is capped by a hydrogen atom along the direction of the
original bond with a fixed C—H bond length of 1.100 A.
All the WFT calculations and the DFT calculations except
the final one for ES are performed with the Gaussian 03
software package.® The iterative solution for the mixing
coefficient is done utilizing the IOP option of Gaussian 03
to change the coefficients of a hybrid functional. The final
DFT calculation with local 7 values is performed with our
own program using integrals calculated from the Gaussian
03 program.

3. Results and Discussion

3.1. Straight-Chain Alkanes. Three straight-chain al-
kanes with increasing sizes, Ci,H,6, C13H3s, and Cy4Hs, have
been tested as prototypes of saturated systems. For the
purpose of testing the accuracy of our method on total
energies, the geometries of these molecules are not optimal.
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Table 1. Total Energies for the CysH1g Molecule by the LHDCn(B3LYP:CCSD(T)) (n = 0, 2, 38) and CCSD(T) Methods

n° AE (mh)

basis set CCSD(T) E (a.u.) subsystem? LHDCO° LHDC2 LHDC3 LHDCO LHDC2 LHDC3

6—31G —617.53317 terminal C4Hs 0.76689 0.76697 0.76698 6.82 —2.78 —0.54
middle C4Hs 0.76705 0.76699

6—31G(d) —618.35579 terminal C4Hg 0.77542 0.77564 0.77569 23.00 —2.72 —0.57
middle C4Hs 0.77585 0.77574

cc-pVDZ —618.53343 terminal C4Hg 0.77770 0.77753 0.77745 —23.20 —2.70 —0.62
middle C4Hs 0.77736 0.77738

cc-pVTZ® —619.02579 terminal C4Hs 0.78188 0.78187 0.78196 -3.32 —2.30 —0.49
middle C4Hs 0.78187 0.78183

2 The CigH1g molecule is divided into 4 C4Hs subsystems. ? 7 is the coefficient of the exchange energy under the local spin density (LSD)
approximation ExPA and is optimized in the LHDC method. ¢ The terminal and middle C,Hs have the same # value for the LHCDO method
since they have the same geometry. ? The error AE (in mhartree) is the energy relative to the full CCSD(T) energy. € The cc-pVTZ basis set

is for carbon, and the cc-pVDZ basis set is used for hydrogen.

In all the alkanes the C—C bonds are fixed at 1.523 A; C—H
bonds are fixed at 1.115 A; CCH, CCC, and HCH bond
angles are fixed at 110.0, 124.9, and 109.3 degrees, respec-
tively; and CCCC dihedral angles are fixed at 180.0 degrees.
The 6—31G(d) basis set is used for all the calculations.

In the DC methods, the accuracy of the methods is greatly
affected by the choice of the partition scheme. Usually, the
larger the subsystems, the higher the accuracy and the
computational cost are. It is thus essential to find a bal-
ance between accuracy and cost. In the present study we
have tested three partition schemes. In the first scheme, the
molecules are divided into 6, 9, and 12 C,Hg molecules
(capped by hydrogen atoms), respectively. In the second
scheme, the molecules are divided into 3 C;H;, 4 C4Ho +
1 terminal C,Hg, and 6 C4H ;o molecules, respectively. In the
third scheme, the molecules are divided into 2, 3, and 4 C¢H 4
molecules, respectively. The three partition schemes here are
designated C,Hg, C4H,0, and C¢H,4 partition schemes.

In Figure 1 the error (the energy difference between the
LHDC and the full CCSD(T) methods) of the second-order
LHDC method is plotted as a function of the size of the
subsystems. It can be seen that the LHDC2(B3LYP:
CCSD(T)) method with the C,Hq partition scheme can
already reproduce the full CCSD(T) energy within 3 mhartree
(1.9 kcal mol ™). As the size of the subsystem enlarged from
C,Hg to C4H ), the error is greatly decreased, down to below
0.1 mhartree, which is just 0.06 kcal mol'. For the C4H,
partition scheme, the most timing consuming step is the
calculation of dimers (i.e., CgHy4) at the CCSD(T) level,
which is still affordable on a common personal computer
(PC) with a moderate basis set. For the C¢H;4 partition
scheme, although the error is very small (0.013 mbhartree),
it requires the calculation of a large C;,H,¢ molecule, which
is perhaps a little expensive for PC computation and is not
recommended. It is worth noting that the error of the LHDC
method increases with the size of the alkane and is always
negative, indicating the energy calculated by the LHDC
method is systematically lower than that of the WFT method.

3.2. Straight-Chain Alkenes. To test our method on
conjugated systems, two fully conjugated straight-chain
alkenes, Ci¢H;s and CgH,o ((3E,5E)-octa-1,3,5,7-tetraene),
have been tested. In both alkenes, C—C single and double
bonds are arbitrarily fixed at 1.500 A; C—H bonds are fixed
at 1.100 A; and CCC and CCH bond angles are both fixed
at 120 degrees. For C;¢H;s, we have also tested the effect of

basis set. Four basis sets have been tested: 6—31G, 6—31G(d),
cc-pVDZ, and cc-pVTZ*. In the latter the cc-pVTZ basis
set is used for carbon, while the smaller cc-pVDZ basis set
is used for hydrogen to reduce computational times. The
results for C;¢H;s are presented in Table 1, where C;¢H;s is
divided into 4 C4Hs.

From Table 1, it may be seen that energies given by the
LHDCO method can already reproduce the full CCSD(T)
energy to an accuracy of about 14 kcal mol ! (23 mhartree).
For the LHDC2 and LHDC3 methods, the energies calculated
are systematically lower than the full CCSD(T) energies, by
—2.78 to —2.30 mhartree for the LHDC2 method and by
—0.62 to —0.49 mhartree for the LHDC3 method. However,
for the LHDCO method including no higher-order corrections,
the error is not systematic. For the LHDC2 and LHDC3
methods, the basis-set dependence of the error is rather weak,
and a moderate decrease is observed when the basis set varies
from simple to complex. Compared with saturated hydro-
carbons, the error in the total energy for the fully conjugated
hydrocarbons is at least an order of magnitude larger when
alkene and alkane are both divided into subsystems contain-
ing four carbon atoms. Therefore, to achieve a similar
accuracy in total energy as that for saturated hydrocarbons,
either higher-order corrections should be included or larger
subsystems should be used for conjugated systems. This is
not unexpected since electrons in conjugated systems are
more delocalized.

For CgHjy, we have investigated the potential energy
profiles with respect to rotation around and stretching along
the central C4C5 bonds, while keeping all other geometrical
parameters fixed. The resulting energy profiles are presented
in Figure 2. Since one of the major deficiencies of the B3LYP
method is the calculation of long-range interactions, which
play an important role in the CgH; rotation barrier, including
second-order corrections is necessary to give good results.
Therefore, the results of the LHDCO method are not
presented here. Figure 2 indicates that LHDC methods greatly
improve the results of the original B3LYP method. The
results indicate that although the error in the total energy
computed by the LHDC2 method is large (see also Table
1), the error in the calculated relative energies is much
smaller (less than 1 kcal mol™!) even when CgH, is divided
into subsystems as small as C;Hy. On the other hand, the
error for the original B3LYP method is as large as 3.4 kcal
mol~!. When enlarged subsystems are used, the energy
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Figure 2. Potential energy profiles of (3E,5E)-octa-1,3,5,7-
tetraene: a) rotating around the central C4C5 bond, where
the zero of the energy is that of the structure with a
C3C4C5C6 dihedral angle of 180 degrees and b) stretching
along the central C4C5 bond, where the zero of the energy
is that of the structure with a C4C5 bond length of 1.5 A. Two
partition schemes have been investigated: dividing into 4 CoH,
and 2 terminal-CoHs + 1 C4He.

profiles calculated by the LHDC?2 method nearly overlap with
those calculated by the full CCSD(T) method. Therefore,
the error in the total energies calculated by the LHDC
methods except LHDCO is most likely systematic. Since
relative energies are more meaningful than total energies, it
seems that even for fully conjugated systems, the LHDC2
method with a rather fine partition scheme is acceptable.
3.3. Benzene Dimer. The benzene dimer is a notorious
system for most DFT functionals.** For example, it is
unbound at the B3LYP level.*’ In the present LHDC
calculations, benzene is divided into three C,H, subsystems,
and the third-order LHDC method is used since benzene
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Figure 3. Potential energy profiles for the parallel displaced
configuration of the benzene dimer, with horizontal separation
R fixed at 1.6 A. The zero of the energy is that for two isolated
benzenes, each with the geometry in the dimer.
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Figure 4. Potential energy profiles for the parallel displaced
configuration of the benzene dimer, with vertical separation
R, fixed at 3.4 A. The zero of energy is that for two isolated
benzenes, each with the geometry in the dimer.

contains three C,H, units and its sz electrons are highly
delocalized. It should be noted that all trimers have been
included for this special case of benzene dimer. The energy
profiles of the parallel configuration of the benzene dimer
are studied, where the CC and CH bonds are fixed at 1.391
A and 1.080 A,“ respectively, and the R; and R, geometrical
parameters as indicated in Figures 3 (varying R with R, fixed
at 1.6 A) and 4 (varying R, with R fixed at 3.4 A) are varied.
The purpose of this test is to see if our LHDC method can
successfully overcome the deficiency of the B3LYP method
and how accurate it is in reproducing the energy profiles
predicted by the sophisticated WFT method. Therefore, the
energy profiles presented in Figures 3 and 4 are calculated
with a moderate aug-cc-pVDZ basis set and are not corrected
by basis set superposition error (BSSE). The zero of energy
in Figures 3 and 4 is the two isolated benzene monomers
with the geometry found for the dimer.
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Figure 5. Timings (f) in minutes for the calculation of straight-
chain alkanes on a single 3.0-GHz Xeon CPU. Two partition
schemes for the LHDC2(B3LYP:CCSD(T)) methods are
investigated: the molecule is divided into CoHg and C4H4o
subsystems.
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Figure 6. Basis-set dependence of the hybrid coefficient »
for six small molecules. Basis sets considered are STO-3G,
6—31G(d), VDZ (cc-pVDZ), VTZ (cc-pVTZ), VQZ (cc-pVQZ),
and V5Z (cc-pV52).

Two LHDC methods have been tested, LHDC3(B3LYP:
MP2) and LHDC3 (B3LYP:CCSD(T)) methods, to reproduce
the energy profiles calculated by the full MP2 and CCSD(T)
methods, respectively. The results indicate that both methods
can accurately reproduce the energy profiles calculated by
the WFT methods. Except for the first point in Figure 3, the
differences between the energies calculated by the LHDC3
methods and the corresponding full WFT methods are small,
all below 1 kcal mol—1. It can also be seen that benzene
dimer is slightly over bound under the LHDC treatments
compared to the full WFT methods.

3.4. Cost and Efficiency. The computational requirements
of the LHDC method are greater than a conventional DFT
calculation since in addition to the calculation of ES at the
DFT level it also requires additional computations to obtain
local 7 values. The additional cost consists of two parts: the
first part is the energy calculation of m-mers (m = 0, 2, 3,...,
n) by the WFT method, and the second part is the iterative
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solution for local 7 values by the DFT method. The iterative
procedure usually finishes in less than 4 iterations. It is
known that the DFT method is much faster than correlation
WEFT methods, and thus the costs for the DFT calculations
for the m-mers are negligible compared to the expensive
WFT methods. In addition, for the demanding WFT methods,
the calculation of an m-mer (rm > 1) is much more expensive
than that of an (m—1)-mer. Therefore, the cost for the LHDC
method mainly comes from two calculations, the calculation
of the largest m-mers by the WFT method and the final DFT
calculation for the ES. In the LHDC2 methods, the calcula-
tion of M(M — 1)/2 dimers is required if all second-order
corrections are included. However, this number can be
greatly reduced by neglecting contributions from dimers in
which two monomers are far apart. For example, in the
present computations for straight-chain alkanes and alkenes,
this number is reduced to M — 1 by excluding those dimers
in which monomers are not connected through chemical
bonds.

In Figure 5 we have compared the computation time for
the straight-chain C,Hy,+, (n = 4—16) alkanes which are
divided into C,Hg or C4Ho subsystems. The 6—31G basis
set is used, and the calculations are performed on a single
3.0-GHz XEON CPU. The comparison indicates that the
costs of the LHDC2(B3LYP:CCSD(T)) method with an C,Hg
partition scheme are just slightly higher than those of the
full B3BLYP method. The results for the alkenes indicate that
the LHDC2(B3LYP:CCSD(T)) method with a fine partition
scheme in which alkanes and alkenes are divided into
subsystems containing two carbon atoms is probably accurate
enough to study the energy profiles of common molecules.
For highly conjugated systems containing aromatic rings, one
may need to use the more expensive LHDC3 method for
satisfactory accuracy. However, the LHDC3(B3LYP:CCS-
D(T)) method is still much less expensive than the full
CCSD(T) method.

3.5. Basis-Set Dependence of the Hybrid Coefficient
7. Six sample molecules including methane, ethene, 1,3-
dibutene, ammonia, water, and hydrogen fluoride are selected
to the test basis set dependence of 7. The geometries of these
molecules are all optimized using the B3LYP/6—31G(d,p)
method. The results are presented in Figure 6. Two conclu-
sions may be drawn from our results. First, # for each
molecule appears systematically convergent to the basis set
limit when the basis set is enlarged up to cc-pV5Z, and the
changes from the smallest basis set to the largest basis set
are only about 3%. Though the basis set dependence of 7 is
not significant, we have found the change of the total energy
for a given molecule is significant. However, since the
dependence of # on the basis set is systematic, this will not
introduce nonsystematic errors for relative energies, which
are more meaningful than total energies. Second, the # values
for different molecules are close to each other. For a given
basis set, the difference between the # values for the molecule
with the largest 7 and the molecule with the smallest 7 is
only 0.006.



Local Hybrid Divide-and-Conquer Method

4. Concluding Remarks

We have presented a novel LHDC method, which combines
highly accurate WFT methods with low-cost DFT methods,
to compute the energy and electronic structure of medium
and large molecules. The method requires one to divide an
entire system into small subsystems and to optimize the local
hybrid coefficient 7 of a hybrid DFT functional for each
subsystem according to the energy of the subsystem calcu-
lated by a high level WFT method. Further refinement to
(local hybrid coefficient) is made by incorporating couplings
between the subsystems. The local hybrid coefficients are
then used to calculate the energy and electronic structure of
the entire system with the hybrid DFT functional. The new
method can accurately reproduce the energy profiles of the
highly accurate WFT methods.

Since for small subsystems, highly accurate WFT methods
may be applied, our LHDC method provides a route to
systematically converge DFT results to “exact” results for
medium and large molecules which are too large to apply
the accurate WFT methods to. The cost of the LHDC method
equals the cost of a usual DFT calculation for the entire
system plus additional efforts to obtain the local hybrid
coefficients. Our results indicate that a second-order LHDC
method which is just slightly more expensive than a DFT
method can already give satisfactory results on potential
energy profiles for highly delocalized systems such as fully
conjugated alkenes.

From a WFT viewpoint, our method is a DC method using
DFT as “glue” to bind subsystems but with the capability of
reproducing the WFT energy and providing electronic
structure information for the entire system that is not
addressed by conventional EDC methods. From a DFT
viewpoint, the hybrid coefficients of subsystems (local
regions) are optimized according to the energy of the accurate
WEFT method, and thus our method can be viewed as a new
local hybrid DFT method.** Thus the “local hybrid (LH)”
in the name LHDC has a double meaning, the hybrid of DFT
and WFT through the optimization of local hybrid coefficient
1 of the DFT exchange.
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