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The metabolism of hydrogen @H-2H"+2€7) constitutes a central process in the global
biological energy cycle. Among all the enzymes that can mediate this process, Fe-only hydrogenases
are unique in their particular high reactivity. Recently, some important progresses have been
achieved. Following our previous pager.-P. Liu and P. Hu, J. Am. Chem. Sdi24, 5175(2002]

that characterizes the individual redox state of the active site of Fe-only hydrogenase, in this work
we have determined the feasible reaction pathways and energetics fop timetBlbolism on the

active site of Fe-only hydrogenases, using density functional theory. We show smagtdbolism
possesses very low reaction barriers and a proximal base from a nearby protein plays an important
role in H, metabolism. ©2002 American Institute of Physic§DOI: 10.1063/1.1519252

The metabolism of hydrogen ¢H-2H"+2e)1°con-  ing to obtain possible catalytic cycles and to understand the
stitutes a central process in the global biological energyrigin of the high reactivity of Fe-only hydrogenases for H
cycle. Among all the enzymes that can mediate this processpetabolism.

Fe-only hydrogenases are unique in their particular high DFT with a generalized gradient approximation
reactivity?® In the last thirty years, tremendous efforts have(GGA-PW914®) was used in this study. Other calculation
been made experimentally, and some importandetails are described in Refs. 14—17. A general consensus is
progresses® have been achieved. However, a completethat the reactivity of Fe-only hydrogenases fos Hetabo-
catalytic cycle involving H oxidation/production has not lism is determined by the 2Fe subunit while thFe—43
been established to date. In this paper, we report feasibleluster is redox inactive.’ In this study, the 2Fe subunit was
reaction pathways and energetics for the riletabolism on  modeled by[(HS(CH;))(CO)(CN")Fe’(u-DTN)(u-CO)
the active site of Fe-only hydrogenases, using density funcx FE(CO)(CN")(L)]% as shown in Fig. (b), where F&
tional theory(DFT). We show that K metabolism possesses = the distal iron(relative to the[4Fe—49 cluste), F€=the
very low reaction barriers and a proximal base from a nearbproximal iron, L=the ligand bonding with the Feat the
protein plays an important role inHnetabolism. transposition tqu-CO, z is the net charge in the system. This

Recently, some important advances in the understandin@odel has been utilized in our previous work, which showed
of structure&8 and redox statés'%of Fe-only hydrogenases Very good agreement with the experiméha similar model
were reported. The x-ray crystal structures show that the ac¥as used by Hall and co-workef%:®

tive center for H metabolism in Fe-only hydrogenases con- ~ BY detailed comparison of possible candidates with ex-
sists of a noveRFe subunitthat is cysteine-S bridged to a perimental data, DFT calculations by Hall and co-workérs

3 . .
[4Fe—49 cubané~ [Fig. 1@]. Both Fe ions in the 2Fe and us® have suggested that during letabolism the 2Fe

subunit are coordinated with biologically uncommon coySubunitinvolves Fe)—Fe(l), Felll)—Fel), and Féil)—-Fel)
CN-ligands[Fig. 1(a)].5 For the sulfur-bridge linking two redox states. In addition, our analysis of the electronic struc-

irons, a PDT chain (- SCHH,CH,S—) was initially pro- ture of the 2F_e gubunit showed that (F(il%—Fe(lll) or
posed in DAH(D. desulfuricans by Nicoletet al® Recently, Fe(lll)—Fgll) oxidation states are not favoredRecent syn-

they suggested that a DTNSCHNHCH,S-) chain can be a theFic work also suggested .that in tr_le 2Fe subuqit low oxi-
better candidat&’ More structural details on Fe-only hydro- dation states are the catalytically active spetiekaking ad-

genases can be found in previous wof®3Theoretically, —/antage of these findings, we explored the catalytic H

Dance carried out the first DFT calculations on possible reMetabolism involving Fé)—Fel), Fel)-Fdl), and Féll)-

action intermediate¥. In his work, however, the model used ]',:(ﬁ”) splsme;. The low energy pathways are described as
for the 2Fe subunit was chemically different from the struc- ollows (Fig. 2.

tures revealed later experimentally. Fan and Hall studied the

heterolytic cleavage of Husing DFT*2 Remarkably, their Fe(ID—Fe(l) HYDRIDE FORMATION

results showed that this step is highly reversible. In this  Route 1: Starting from the fully reduced state,(Ifre
work, we have carried out extensive DFT calculations aimF¢(l)(vacani 1 (see the Fig. 2 captionsince the N of the
DTN chain in1 is a base, it can capture a proton from its

aAuthor to whom correspondence should be addressed. Electronic maitrrounding formin.gz'Then complex2 exothermally(0.1
P.Hu@qub.ac.uk eV) transforms to its isome2”’. Next the proton on the N
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FIG. 1. (a) Active center of Fe-only hydrogenases as
determined experimentally from. desulfurcicans(b)
Calculation model used in this work.

(a) (b)

moves to the F& yielding the Féll)—Fgll)(H) 4, through a  energy route as follows. Route 2: Starting from structlire

transition statgTS) 3. In this step, the 2Fe subunit is oxi- (equivalent tol, see the caption of Fig.)2the NH; picks up

dized (two-electron oxidationby the proton from a Ré)—  a proton forming NH (2'). Then the proton from N

Fe(l) complex to a F@l)—Fegll) complex and the reaction directly moves to the Feresulting in4’ through the TS3',

barrier was determined to be 0.03 eV, as shown in Fig. 3. with a barrier of 0.10 eV. The energetic profile frathto 4’
Nicolet et al® found in the x-ray crystal structure of is shown in Fig. 3.

DdH that the amino group of Lys 237 is 4.4 A away from the

Fé'. It was speculated that this amino group may be a cata Fe(ll)—Fe(l)(#-H,) FORMATION

lytic base in reaction! To model its effect, we placed a Route 3: The Fg@l)—F€ll)(H) 4, the highest oxidation

NH; molecule near the Egwhich resulted in a second low state of the 2Fe subunit, may accept one eledreduction
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FIG. 2. Low energy catalytic cycles for,Hnetabolism calculated using DFT on the active cef@&e subunit clust¢rof Fe-only hydrogenases. The 2Fe
subunit is modeled as described in the text and here is illustrated by a simplified structure. Each state is named and labeled beside the stredigaadand t
(L) that bonds with the Feat the trans position to the bridging CO is emphasized. For example, the-Fel)(vacan} indicates that the L is absent; the
Fe(ll)-Fgll)(H) means that the Lsia H atom. Comple® and4’ are equivalent, namely, they are exact same excef't the NH; is used to model the Lys
residue near the 2Fe subuttite distance between the N in the MNihd the F&is 4.3 A in the optimized structuy& This is also true for compleg and1’.

The dotted rectangle in complex 6 indicates the low stability of complese6 text and Ref. 22The insert at the upper corner presents the different reaction
routes in the figurdalso see text for detajls
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e T 4 g FIG. 3. Energetics in the determined catalytic cycles.
B T == — Each intermediate state is labeled by the same number
H, as in Fig. 2. The unit of energy is eV.

from other parts of the enzyme vyielding the(Fg-Fgl)(H) complete the reaction cycté.It should be emphasized the
5. Then, the DTN chain of compleXx accepts a proton from properties of the key intermediates in the reaction cycles in-
its environment to produce an intermedi&te'he complex6  vestigated in this workFig. 2) such as geometrical struc-
is not stable: the optimization of compléxwill rearrange6  tures, vibrational frequencies and EPR properties are consis-

to the Fe(Il)—Fe(l)-H,) 7.2° tent with the available experimental datsee Ref. 13 for
In parallel to route 3, an alterative route may exist. Routegetaily.
4: Complex4 can firstly capture a proton to for®l. Next, By examining the low energy routes, we found that each

the proton moves to the Féorming Fe(ll)~Fe(I)(-H,)  route has interesting characteristics with respect to the H
7' through the TSE', with a barrier of 0.18 eV, as shown in eygjution and oxidation. The energetically favored cycle
Fig. 3. In complex7" molecular H is strongly bonded at the  (cycle 1) for H, evolution from our calculation consists of
Fe' (without H, at the F€ the Féll)—Fell)(vacant trans- o te 1 and route 3, shown in Fig. 3. In this cycle, the highest
formg to hugely distorted ;tru_ctu_ﬁhe 2Fe active sm? geom- o rier for H, evolution (from 2 to 4) is only 0.03 e\t
etry is destroyedafter optimization due to the N in DTN However, two key steps in this cycle are not favored for H

H H d ’
chal?é)elngdstroggtg (attractledtby theCiF.e'EQOrgleasr? Ii'h ,; oxidation: The barrier from# to 2" is too high(0.8 eV) in
must be reduce one-electron reguctionin whic € route 1(Fig. 3); the reaction from7 to 5 in route 3 cannot

(7-H,)—Fé bond is very weak0.09 eVf. The reaction from occur because the reverse reaction fréro 7 is a sponta-

5’ to 7' has been studied by Fan and H&land our results . )
. : ' neous process. This means that cycle 1 is not thermally fea-
here are consistent with theirs. . Do :
sible for H, oxidation at room temperature. For, lbxida-
MOLECULAR H. RELEASE tion, the most energetically favored cycle is the ¢oycle 2
2 that contains route 2 and route 4. The highest barrier for H
In complex7, H, can be readily released, resulting in the oxidation(from 4’ to 2") in this cycle is 0.28 e\(Fig. 3. It
Fe(ll)—F€gl) 8. Complex8 is a partially oxidized state and it should be noted that which route is followed may also de-
may be further reduce@accepting one-electrorio finally  pend on the initial position of protons. If a proton initially

> " =" 319

FIG. 4. Snapshots for the lowest energetic pathway of catalytiprblduction, illustrated by optimized three-dimensional structures. Important atoms, e.g., Fe
atoms, are shown by balls, and the others are presented by cylinders. Important digharioesach state are labeled, which clearly shows the position
variation of the bridging CO during the catalytic cycle.
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