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Transition states are fundamental to understanding the reaction dynamics qualitatively in chemical
physics. To date various methods of first principle location of the transition states have been de-
veloped. In the absence of the knowledge of the final structure, the softest-mode following method
climbs up to a transition state without calculating the Hessian matrix. One weakness of this kind of
approaches is that the number of rotations to determine the softest mode is usually unpredictable. In
this paper, we propose a locally optimal search direction finding algorithm, namely LOR, which is an
extension of the traditional conjugate gradient method without additional calculations of the forces.
We also show that the translation of forces improves the numerical stability. Experiments for the
Baker test system show that the proposed algorithm is much faster than the original dimer conjugate
gradient method. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792644]

I. INTRODUCTION

Transition state theory (TST) plays a central role in
chemical kinetics. To determine TS and thus predict chemi-
cal activity based on TST is a major theme in modern the-
oretical simulation of chemical reactions. The algorithms for
locating TS can be generally divided into two classes, namely,
(i) chain-of-states methods and (ii) surface-walking methods.
The former class locates the TS by simultaneously optimiz-
ing a few connected images on the potential energy surface
(PES) to identify the minimum energy path (MEP). The rep-
resentative methods include the nudged elastic band method
(NEB),1–5 doubly-nudged elastic band (DNEB),6–9 and the
string method.10, 11 The later class is much less demanding
in computational power as only one structural image on the
PES is required and the local information such as the gradient
(Force) or the second derivative (Hessian) of PES is utilized
to manipulate the image towards TS. Belonging to this cate-
gory are the methods, such as the partitioned rational function
optimizer (P-RFO),12–15 the activation-relaxation technique
(ART),16, 17 the hybrid eigenvector following method,18–22 the
dimer method,23–27 the bond-length constrained minimization
method,28 the constrained-Broyden dimer method,29 and the
gentlest ascent dynamics method (GAD).30

Suppose N is the number of atoms in the system. The
transition states are the first order saddle points of the en-
ergy surface in 3N potential space. The softest-mode follow-
ing methods16, 20, 23 in the later class need to approximate the
softest mode of the Hessian at current image.

Let R0 be current image and H be the Hessian at R0. The
softest mode is determined by the eigenvector corresponding
to the smallest eigenvalue of H, i.e., the unit vector N mini-
mizing the curvature CN as follows

min
NT N=1

CN = NT HN. (1)

a)Electronic mail: wggao@fudan.edu.cn.

Assume that the energy surface is almost quadratic within
a fixed distance δR. We use R1 and R2 to denote the end points
on the sphere centered at R0 along the unit vector N, that is,

R1 = R0 + δRN, R2 = R0 − δRN.

As the calculation of H is very expensive, we approximate the
curvature by

CN ≈ (F2 − F1)T N
2δR

,

where F1 and F2 are the forces acting on configurations
R1 and R2, see Figure 1. This shows that minimizing CN
is “equivalent” to minimizing (F2 − F1)T N. An alternative
way is to use 2F0 ≈ F1 + F2 to reduce the calculation of the
forces.

Recalling that in the gradient-type method, we need to
calculate the gradient of CN with respect to N which gives

(I − NNT )HN ≈ (I − NNT )(F2 − F1)

2δR
= F⊥

2 − F⊥
1

2δR
,

where F⊥
i = (I − NNT )Fi is orthogonal to N. We remark that

the gradient is also known as the residual corresponding to the
direction vector N.

Notably, the dimer method23 is a softest mode following
algorithm starting with an initial structure and mode, which
uses only first derivatives of potential energy. Finding the
softest mode is also known as the rotation step in the dimer
method. Then the geometry step is to translate the midpoint
of the dimer along a modified force

Ftran =
{−NNT F0 if CN > 0,

(I − 2NNT )F0 if CN < 0.

And the step length is suggested to be

δx = 1

2

FT
tranT
|CT| ,
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FIG. 1. Dimer model.

where T is the unit vector of current translation direction in
Ref. 25.

Unlike the minimization procedure, the behavior of sad-
dle point locating method is much more subtle. Reformulating
the rotation and geometry steps into a dynamic system frame-
work gains mathematical insight. For examples, the gentlest
ascent dynamics30, 31 and furthermore the constrained shrink-
ing dimer dynamics (CSDD)32 present the nature of the dy-
namical behavior. However, efficient numerical schemes to
accelerate the simulation of the dynamical system are still
unclear.

An important factor in evaluating the success of the
method is the number of total force calls. To reduce the force
calls in the rotation step, maximum number of allowed ro-
tations and less strict convergence criterion are considered.24

However, limiting the number of rotations may lead to inaccu-
rate translation direction and therefore miss the relevant sad-
dle point on PES.

In this work, we developed a better approach to treat the
rotation step by using the idea of locally optimal conjugate
gradient direction from the eigensolver. The main point is to
enlarge the subspace expansion utilizing the vector in previ-
ous step therefore to get more accurate approximation of the
softest mode without additional calculation of the forces. The
new method was tested by the Baker test system. The results
show that our method greatly increases the efficiency of the
rotation move by a factor of 3.

II. LOCALLY OPTIMAL CONJUGATE GRADIENT
FOR FINDING THE SOFTEST MODE

As described above, locating the softest mode in the rota-
tion step is equivalent to solve the smallest eigenpair. Differ-
ent methods have been be considered to choose the subspace
of rotation, including conjugate gradient,23, 25 Lanczos,17

Broyden,29 and L-BFGS,26, 33, 34 etc.
Among these optimization-based methods, the Broyden

and L-BFGS algorithms are more easily trapped by the higher
eigenpairs. If we regard the rotation and geometry steps as
an inner-outer iteration scheme, the conjugate-gradient type
method is more preferable than other methods because the
previous eigenpair is naturally a good initial guess in the next
iteration, while other methods much less depend on the initial
guess. This is similar to the self-consistent field in the elec-
tronic structure calculations, where the conjugate-gradient
method is widely used as the eigensolver.

R0

R(k−1)
1

R(k−1)
2

G(k−1)
R(k)

1

R(k)
2

G(k−1)

F(k)

G(k)

FIG. 2. Rotation via conjugate direction.

For this reason, we look for more efficient conjugate-
gradient type method for the rotation step. First we briefly
introduce the plane of rotation in dimer conjugate gradient
method which is closely related to the proposed approach.

A. Dimer conjugate gradient method

First we define F = F⊥
2 − F⊥

1 which is “parallel” to the
gradient.

In dimer conjugate gradient method, the conjugate direc-
tion is a linear combination of the current gradient and the
previous conjugate direction, see Figure 2. More precisely,
we use G(k) to denote the conjugate direction at kth iteration,
then

G(k) = F(k) + γkG̃(k−1),

where

γk = (F(k) − F(k−1))T F(k)

F(k)T F(k)

and G̃(k−1) is the rotation of G(k−1) from R(k−1)
1 to R(k)

1 .
Let T(k) = G(k)/‖G(k)‖ be the unit vector along the con-

jugate direction. Then the conjugate gradient method finds
the minimum curvature in the rotation plane spanned by
{N(k), T(k)}. Namely, the best rotation direction is to be de-
termined by

min
a2+b2=1

(a b)

(
N(k)T

T(k)T

)
H( N(k) T(k) )

(
a

b

)
, (2)

when N(k), T(k) are known. Let ( a(k) b(k) ) be the mini-
mizer of (2), then the next direction is updated as N(k+1)

= ( N(k) T(k) )
(a
b

)
.

B. Locally optimal conjugate gradient method

Following the idea of LOBPCG method35 for solving
symmetric sparse eigenproblem, we impose one additional
vector P(k). Instead of minimizing the 2 × 2 sub-eigenproblem
in (2), we minimize a 3 × 3 sub-eigenproblem in each
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iteration (except the first iteration) as follows(
a(k) b(k) c(k)

) = arg min
‖aN(k)+b�(k)+cP(k)‖=1

(
a b c

)

×

⎛⎜⎜⎝
N(k)T

�(k)T

P(k)T

⎞⎟⎟⎠H( N(k) �(k) P(k) )

⎛⎜⎝a

b

c

⎞⎟⎠,

(3)

where �(k) = F(k)/‖F(k)‖. P(k+1) is updated by

P(k+1) = b(k)�(k) + c(k)P(k)

‖b(k)�(k) + c(k)P(k)‖
and P(1) = 0. As a result, the new rotational direction is
obtained by

N(k+1) = ( N(k) �(k) P(k) )

⎛⎝a(k)

b(k)

c(k)

⎞⎠.

Solving (3) is equivalent to solving the smallest eigen-
value λ corresponding to the following generalized eigenvalue
problem ⎛⎜⎝ N(k)T

�(k)T

P(k)T

⎞⎟⎠H( N(k) �(k) P(k) )

⎛⎝ a

b

c

⎞⎠

= λ

⎛⎜⎝ N(k)T

�(k)T

P(k)T

⎞⎟⎠( N(k) �(k) P(k) )

⎛⎝ a

b

c

⎞⎠.

The overlapping matrix in the right side is not identical in
general. Since N(k) and �(k) are orthonormal and P(k) is nor-
malized, we look into the structure of the overlapping matrix
which is of the form⎛⎜⎝ 1 0 N(k)T P(k)

0 1 �(k)T P(k)

P(k)T N(k) P(k)T �(k) 1

⎞⎟⎠.

Then a simplified Cholesky factorization can be adopted to
convert the generalized eigenvalue problem to the standard
one.

In principle, we can keep all historical vectors and opti-
mize globally. However, it has been observed35 that the ap-
proximation of the first eigenpair using the locally optimal
idea is about the same quality as those by global optimization.
Moreover, the locally optimal method is more stable when the
Hessian matrix is ill-conditioned. And in Ref. 36, locally op-
timal rotation (LOR) is considered as a Jacobi conjugation
scheme

G(k) = F(k) + γkG̃(k−1), γk =− F(k)T J
(
C

(k)
N , N(k)

)
G(k−1)

G(k−1)T J
(
C

(k)
N , N(k)

)
G(k−1)

,

J(C(k)
N , N(k)) = (I − N(k)N(k)T )

(
H − C

(k)
N I

)
(I − N(k)N(k)T ),

where J(C, N) is the Jacobi correction operator and I is the
identity matrix. LOR implicitly employs C

(k+1)
N instead of

C
(k)
N in the Jacobi correction operator.

C. Translations of the forces

Given a matrix, the important characterization of an
eigensolver is that only one matrix-vector multiplication is
carried out in each iteration. The situation is slightly more
tricky because of the fact that the potential energy surface is
usually not exactly quadratic.

In the original dimer method, HN(k+1) is approximated
by calculating one extra force at R0 + εN(k+1) for some small
ε. Then

HN(k+1) ≈ −F(R0 + εN(k+1)) − F(R0)

ε
.

As we already have

N(k+1) = a(k)N(k) + b(k)�(k) + c(k)P(k),

it is naturally to translate the existing forces to the new
direction

HN(k+1) = a(k)HN(k) + b(k)H�(k) + c(k)HP(k).

And similarly, HP(k+1) can be translated from H�(k) and
HP(k). Therefore, we only carry out H�(k+1) in the next it-
eration. A similar idea has been used in L-BFGS method in
Ref. 26. However, our treatment does not use the extrapola-
tion technique, as a result, behaviors more stable.

Now the question is whether the errors in the force cal-
culations will be accumulated during the translations. It is in-
teresting that it indeed improves the numerical stability. The
reason is that when we do the translation, we implicitly use
the same Hessian matrix on different directions. While the di-
rect approximation of the forces involves high order perturba-
tions especially when N(k+1) almost converges. The detailed
analysis will be presented in a separate paper.

In particularly, the calculated curvature at the k + 1st it-
eration is guaranteed to be less than or equal to the one at kth
iteration. It is easily seen from the 3 × 3 sub-problem by set-
ting (a(k), b(k), c(k)) = (1, 0, 0). This phenomenon is verified
by the experiments in Sec. III.

D. Overall algorithm

Combining the techniques above, we obtain the LOR al-
gorithm stated in Algorithm I. The iteration stops when the
residual norm is small enough, i.e., equivalently ‖F(k)‖ < τ

for some k, where τ is a given tolerance or when the curva-
ture stalls.

We emphasize that there is only one force call in each
iteration in Algorithm I.

III. RESULTS AND DISCUSSION

To test the efficiency of our approach, we chose Baker
reaction system37 as the testing examples, which contains 25
different chemical reactions as listed in Table I. The same
system has been utilized to test the modified dimer method.
Columns (11) and (12) in Table I are the numbers of iter-
ations and forces by using CG algorithm in original dimer
method. Columns (21) and (22) are the numbers of itera-
tions and forces by using LOR. For comparison purpose,
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ALGORITHM I. Locally Optimal Rotation (LOR)

procedure LOR (R(1)
0 , N(1)) � Initial structure and mode

F(1) ← (I − N(1)N(1)T ) HN(1) � The force orthogonal to N(1) at R(1)
0

if ‖F(1)‖ < τ , then stop � Convergence check
�(1) ← F(1)/‖F(1)‖

min
a2+b2=1

( a b)

(
N(1)T

�(1)T

)
H( N(1) �(1) )

(
a

b

)
� 2 × 2 eigenproblem

N(2) ← aN(1) + b�(1)

P(2) ← �(1)

F(2) ← (I − N(2)N(2)T )HN(2)

for k = 2 to rotmax do
if ‖F(k)‖ < τ , then stop
�(k) ← F(k)/‖F(k)‖

min
‖aN(k)+b�(k)+cP(k)‖=1

(a b c)

⎛⎜⎝ N(k)T

�(k)T

P(k)T

⎞⎟⎠H(N(k) �(k) P(k))

⎛⎝ a

b

c

⎞⎠ � 3 × 3 eigenproblem

N(k+1) ← aN(k) + b�(k) + cP(k)

‖aN(k) + b�(k) + cP(k)‖
P(k+1) ← b�(k) + cP(k)

‖b�(k) + cP(k)‖
F(k+1) ← (I − N(k+1)N(k+1)T )HN(k+1)

end for
end procedure

TABLE I. The energy and gradient calculation steps from original dimer method, the LOR method and the L-BFGS method in the TS location of Baker
reactions with 10 maximum rotations each geometry step. Columns (11) and (12) are the numbers of iterations and forces by using CG algorithm in original
dimer method. Columns (21) and (22) are the numbers of iterations and forces by using LOR. Columns (31) and (32) are the numbers of iterations and forces
by using L-BFGS, respectively.

System Dimension (11) (12) (21) (22) Ratio (%) (31) (32)

1 CH3O → CH2OH 15 9 114 10 40 35 9 52
2 Claisen rearrangement 42 20 410 24 104 25 29 117
3 H3CCH3 → H2CCH2 + H2 24 14 236 15 74 31 14 59
4 Parent Diels-Alder 48 28 594 28 175 29 39 257
5 β-(formyloxy) ethyl 30 16 286 16 74 26 17 59
6 Bicyclo110 butane TS1 30 32 542 22 104 19 27 131
7 Bicyclo110 butane TS2 30 35 748 29 126 17 30 133
8 H2CCHOH → H3CCHO 21 28 468 26 128 27 24 118
9 H2CNH → HCNH2 15 20 216 18 83 38 27 118
10 H2CO → H2 + CO 12 17 237 16 66 28 13 71
11 H2O + PO−

3 → H2PO4 28 18 347 21 108 31 27 150
12 H3CCH2F → H2CCH2 + HF 24 20 334 24 111 33 32 211
13 HCCH → CCH2 12 15 161 18 101 63 25 174
14 HCNH2 → HCN + H2 15 11 87 11 54 62 14 64
15 HCN −→ HNC 9 10 115 10 45 39 9 59
16 HCOCl → HCl + CO 12 30 530 23 164 31 ## ##
17 HCONH+

3 → NH+
4 + CO 21 19 357 27 149 42 ## ##

18 HCONHOH → HCOHNHO 21 14 286 20 86 30 ## ##
19 HNCCS → HNC + CS 15 18 332 13 85 26 ## ##
20 HNC + H2 → H2CNH 15 14 112 14 59 53 15 63
21 Ring-opening cyclopropyl 24 ## ## 19 88 # 19 89
22 Rotational TS in acrolein 24 44 775 19 76 10 ## ##
23 Rotational TS in butadiene 30 41 645 30 154 24 ## ##
24 Silylene insertion 33 23 446 25 117 26 18 99
25 s-Tetrazine → 2HCN + N2 24 15 278 19 128 46 19 92
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TABLE II. The iteration number and average rotation steps per iteration of 25 reactions in the Baker test system. The “##” sign in the table represents that the
corresponding method either produces the wrong TS or diverges after 1000 forces. Reaction 21 is not counted when calculating the average Itr and Av. Rot for
the original dimer method. Reactions 16, 17, 18, 19, 22, and 23 are not counted when calculating the average Itr and Av. Rot for the L-BFGS method.

System 1 2 3 4 5 6 7 8 9 10 11 12 13

Itr CG 9 20 14 28 16 32 35 28 20 17 18 20 15
LOR 10 24 15 28 16 22 29 26 18 16 21 24 18

L-BFGS 9 29 14 39 17 27 30 24 27 13 27 32 25

Av. Rot CG 10.7 18.5 14.9 19.2 15.9 14.9 19.4 14.7 8.8 11.9 18.8 14.7 8.7
LOR 2.0 2.3 2.9 4.3 2.6 2.7 2.3 2.9 2.6 2.1 3.1 2.6 3.6

L-BFGS 3.8 2.0 2.2 4.6 1.5 2.9 2.4 2.9 2.4 3.5 3.6 4.6 5.0

System 14 15 16 17 18 19 20 21 22 23 24 25 Av.
Itr CG 11 10 30 19 14 18 14 ## 44 41 23 15 21.3

LOR 11 10 23 27 20 13 14 19 19 30 25 19 19.9
L-BFGS 14 9 ## ## ## ## 15 19 ## ## 18 19 21.4

Av. Rot CG 5.9 9.5 15.7 16.8 18.4 16.4 6.0 ## 15.6 13.7 17.4 16.5 14.30
LOR 2.9 2.5 5.1 3.5 2.3 4.5 2.2 2.6 2.0 3.1 2.7 4.7 2.98

L-BFGS 2.6 4.6 ## ## ## ## 2.2 2.7 ## ## 3.5 2.8 3.14

we also implemented the L-BFGS rotational algorithm used
in the DL-FIND package.27 The numbers of iterations and
forces by using the L-BFGS algorithm are listed in columns
(31) and (32), respectively. For all the reactions studied, we
started from the same guess structure (RGS) with at least
one negative eigenvalue as suggested by Baker.15 The initial
mode for the dimer was set as Nini = RGS − RIS . All cal-
culations were performed using VASP package38 with ultra-
soft pseudo potentials in which the GGA-PBE exchange-
correlation functional was utilized. The rotation stops if the
‖F‖ is lower than 0.1 eV/Å or 10 rotational moves (20 steps
of energy and force calculations) have been made. The L-
BFGS algorithm26 also stops when the rotation angle is less
than 5◦. The TS searching is converged if the maximum force
on each freedom (max |F|) is below 0.05 eV/Å. All the deter-
mined TSs have been checked with the literature structure15

to ensure that the correct TS is identified. In Table I,
the “##” sign in the table represents that the corresponding
method either produces the wrong TS or diverges after 1000
forces.

From Table I, we found that the average number of steps
by using original method is 361 for the 24 reactions with lo-
cated correct TS, and the method fails in one reaction. By
using the LOR method, the average number of steps is re-
duced to 100 for 25 reactions with located correct TS, and
the method succeeds in all reactions. The overall efficiency
is increased by about 261%. With our implementation, the L-
BFGS method failed in 6 reactions. And it is still a little worse
than the LOR method for other reactions. Table II listed the it-
eration numbers (Itr) and the average rotation steps (Av. Rot)
per iteration of each reaction in Baker system (reaction 21 is
not counted). We can see that on average, the LOR method
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FIG. 3. The ‖F‖ trajectory (a) and curvature trajectory (b) of rotation move. R0 is determined as the initial structure of the reaction parent Diels-Alder. The
initial mode is determined the same as that in Baker test.
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FIG. 4. The ‖F‖ trajectory (a) and curvature trajectory (b) of rotation move. R0 is determined as the initial structure of the reaction β-(formyloxy) ethyl. The
initial mode is determined the same as that in Baker test.

does not save the iteration number to locate the transition
state. It is reasonable because the iteration number is mainly
determined by the translation move that is the same for these
methods. However, the Av. Rot is decreased from 14.2 in orig-
inal dimer to 3.0 in our method which means the efficiency of
rotation is increased by 373%. Moreover, the average Itr and
Av. Rot of the L-BFGS method for the 19 reactions are 21.4
and 3.14 which are very close to those of LOR.

We have further investigated the convergence behavior
of LOR by utilizing the reaction parent Diels-Alder, the re-
action β-(formyloxy) ethyl, and the reaction H2CO → H2

+ CO as examples because the Av. Rot of these reactions are
close to the average value of the system. The initial struc-
tures were set as R0, that is, only the first rotation steps

were compared. Both methods start from the initial modes
and converge to ‖F‖ < 0.1 eV/Å. The results are shown in
Figures 3–5, respectively. For comparison, the results of the
Broyden method29 is also shown because it uses the same ini-
tial modes in the first rotation steps. We can see that the tra-
jectories of the LOR method are smoother than those of CG
algorithm in original dimer method and the Broyden method,
and the LOR method always converges faster. The curvatures
calculated by the LOR method monotonically decrease since
the 2nd iteration while CG algorithm and the Broyden method
do not. It seems that the Broyden method did not converge to
the softest mode in the reaction parent Diels-Alder. It is worth
noticing that this would happen for the Broyden method as
stated in Ref. 29.
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FIG. 5. The ‖F‖ trajectory (a) and curvature trajectory (b) of rotation move. R0 is determined as the initial structure of the reaction H2CO → H2 + CO. The
initial mode is determined the same as that in Baker test.
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FIG. 6. The distances between each structure in the iteration and the find saddle point structure for (a) the reaction bicyclo110 butane TS1 and (b) the reaction
ring-opening cyclopropyl.

We measured the distances between each structure in the
iteration and the find saddle point structure (for the example
that the dimer method fails, we use the saddle point found by
LOR instead). Since we essentially use the same step length
formula as the dimer methods, the geometry steps behavior
similarly for most examples. However, we can still see from
Figure 6 that for the reaction bicyclo110 butane TS1 and the

reaction ring-opening cyclopropyl, the dimer method hovered
over or escaped away from the saddle point due to the inaccu-
rate directions. This confirms the stability of the LOR method.

We are also interested in seeing the effects of reducing
the maximum number of rotations. So we changed it from 10
to 5 (up to 10 force calculations in each iteration). The results
are shown in Table III. Not surprisingly, the behaviors of CG

TABLE III. The energy and gradient calculation steps from original dimer method, the LOR method and the L-BFGS method in the TS location of Baker
reactions with 5 maximum rotations each geometry step. Columns (11) and (12) are the numbers of iterations and forces by using CG algorithm in original
dimer method. Columns (21) and (22) are the numbers of iterations and forces by using LOR. Columns (31) and (32) are the numbers of iterations and forces
by using L-BFGS, respectively.

System Dimension (11) (12) (21) (22) Ratio (%) (31) (32)

1 CH3O → CH2OH 15 15 81 9 38 47 9 41
2 Claisen rearrangement 42 22 234 20 96 41 21 96
3 H3CCH3 → H2CCH2 + H2 24 15 162 13 53 33 14 61
4 Parent Diels-Alder 48 29 322 27 163 51 ## ##
5 β-(formyloxy) ethyl 30 15 168 16 74 44 17 59
6 Bicyclo110 butane TS1 30 30 288 22 104 36 29 132
7 Bicyclo110 butane TS2 30 40 468 31 132 28 28 139
8 H2CCHOH → H3CCHO 21 23 233 20 98 42 39 199
9 H2CNH → HCNH2 15 21 150 18 83 55 31 131
10 H2CO → H2 + CO 12 13 131 16 66 50 12 51
11 H2O + PO−

3 → H2PO4 28 19 217 21 108 50 17 88
12 H3CCH2F → H2CCH2 + HF 24 16 163 24 111 68 25 118
13 HCCH → CCH2 12 13 124 23 112 90 ## ##
14 HCNH2 → HCN + H2 15 11 85 11 51 60 15 73
15 HCN −→ HNC 9 10 101 10 45 45 14 68
16 HCOCl → HCl + CO 12 39 383 25 140 37 ## ##
17 HCONH+

3 → NH+
4 + CO 21 44 477 49 332 70 ## ##

18 HCONHOH → HCOHNHO 21 ## ## ## ## # ## ##
19 HNCCS → HNC + CS 15 22 256 13 78 30 ## ##
20 HNC + H2 → H2CNH 15 14 111 14 59 53 14 60
21 Ring-opening cyclopropyl 24 ## ## 18 83 # 19 85
22 Rotational TS in acrolein 24 17 182 18 79 43 ## ##
23 Rotational TS in butadiene 30 ## ## 36 187 # 30 185
24 Silylene insertion 33 18 182 25 116 64 23 119
25 s-Tetrazine → 2HCN + N2 24 17 193 16 83 43 30 150
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algorithm changed a lot while the LOR method did not. This
is because CG algorithm did not achieve the softest modes in
many geometry steps. Although we see the improvements on
the force calls for most reactions, it failed in 3 reactions. And
the L-BFGS failed on two additional reactions 4 and 13.

Finally, the geometry step may be further improved by
using the continuous translational move scheme proposed
previously29 and an accurate mode direction can certainly
help to stabilize the continuous move. This will be the future
direction to explore.

IV. CONCLUSIONS

We proposed a locally optimal rotation strategy in the cal-
culation of TST states in this paper. This new strategy not only
accelerates the rotations, but also improves the convergence
numerically. Experiments with the Baker test system demon-
strates the efficiency of the proposed method.
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