Supplementary information

Restructuring and Hydrogen Evolution on Pt Nanoparticle

Guang-Feng Wei, Zhi-Pan Liu*
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Key Laboratory of Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, China

Contents

1. On the structures of Pt clusters
2. The stability of the subsurface H atoms in Pt cluster
3. HER on $\{\mathbf{1 1 1}\}$ facets of $\mathbf{P t}_{44} \mathbf{H}_{\mathbf{8 0}}$
4. The $X Y Z$ coordinates for the $G M$ of Pt_{44} and $\mathrm{Pt}_{44} \mathbf{H}_{80}$

1. On the structures of Pt clusters

Nano and subnano Pt clusters have been extensively studied for their relevance to catalysis (e.g. interaction with molecules) ${ }^{[16-18]}$. However, the (most stable) structure of small Pt clusters is generally highly controversial due to the complexity of the potential energy surface of transition metal clusters. A famous example is Pt_{55} cluster, which was suggested be a magic cluster with I_{h} symmetry, the same as Lennard-Jones particles. However, Apra et al. ${ }^{[19]}$ found that Pt_{55} might be amorphous like since the I_{h} structure is much less stable. Li et al. ${ }^{[20]}$ shows that in fact, 55 atom clusters of many transition metals is less stable than its neighboring 54 or 56 clusters.

In this work, we aim to identify a well-defined structure as a starting point for studying HER and thus we have searched for the magic number size of (sub)nano Pt particles based on the SSW-DFT global structure search. Since the structure of many of these small Pt clusters have been analyzed in the previous work ${ }^{[21-22]}$, one purpose here is also to confirm the magic number size reported. Indeed, we found that the global minimum (GM) of Pt_{44} is a O_{h} structure (Fig. S 1 b) and it is the magic number of $\sim 1 \mathrm{~nm}$ with higher relative stability compared to the neighboring clusters. To make this clearer, we also show the GM structures of $\mathrm{Pt}_{\mathrm{N}}(\mathrm{N}=41 \sim 46)$, nearby the magic cluster Pt_{44}, in Fig. S1a. The GM structure of $\mathrm{Pt}_{42}, \mathrm{Pt}_{43}$ and the second lowest minima of Pt_{40} and Pt_{45} are similar with the $\mathrm{O}_{\mathrm{h}} \mathrm{Pt}_{44}$, which can be generated by adding or removing the apex Pt atoms from Pt_{44}. For $\mathrm{Pt}_{41}, \mathrm{Pt}_{45}$ and Pt_{46}, the low symmetry structures turn out to be more stable and become the GM structure (they are not magic numbers).

For the other sizes investigated (as shown in Fig. S1), we found that the magic number size appears at $\mathrm{Pt}_{14}, \mathrm{Pt}_{18}, \mathrm{Pt}_{22}, \mathrm{Pt}_{27}, \mathrm{Pt}_{36}$, being in general consistent with those suggested previously ${ }^{[21]}$, although the exact GM structure from this work can be different. This is mainly due to additional new structure being identified using SSW-DFT global search, which turns out to be more stable than the previously reported GM. For example, the GM structure identified by our SSW-DFT global search of Pt_{36} is a newly found $\mathrm{D}_{3 \mathrm{~h}}$ triangular prism, which contains 3 core atoms and 33 surface atoms. This structure is 1.51 eV more stable than the previously reported 4×9 (four layers and nine atoms per layer) cuboid structure ${ }^{[21]}$.

Here we discuss briefly on the magic cluster size of the small Pt clusters (which is not the focus in this work and will be followed up in our future work). For example, Kumer and Kawazoe ${ }^{[21]}$ reported that the cube isomer with simple cubic packing has the lowest energy for $\mathrm{Pt}_{25} \sim \mathrm{Pt}_{38}$ and the fcc packing O_{h} structures becomes more stable for the larger clusters. According to our results, the GM of the magic cluster of Pt_{27} is indeed the same simple cubic structure, but such cube structures are only stable in a small range (from Pt_{25} to Pt_{28}). For all Pt_{N} clusters $(\mathrm{N}=$ $12 \sim 46)$ studied in this work, only 5 cluster sizes $(N=14,40,42,43,44)$ are identified to have the the fcc-packing GM structure. For many non-magic size clusters, the GM structure is in fact amorphous like, similar to Pt_{55} mentioned above. A nice example is Pt_{38}, a low symmetry $\left(\mathrm{C}_{1}\right)$ structure is identified to be $G M$, which is 1.92 eV and 1.75 eV more stable than the cube $\mathrm{C}_{2 \mathrm{v}}$ structure and truncated octahedron O_{h} structure (the most stable structure of LJ cluster).

It might also be mentioned that the GM structures of Pt clusters below Pt_{22} have no core atoms with all Pt atoms being on the surface. The core-shell structure starts from Pt_{23}, where one core
atom is present. The number of core atoms then increases gradually: there are six core atoms at Pt_{44} octahedron.

Magic number size in Pt_{N} clusters ($\mathbf{N}=12$ to 46) from SSW -DFT search

(a)

42b ($0.13, C_{2 v}$)

$$
\text { 43a }\left(0, C_{4 v}\right)
$$

44b (0.10, C_{s})

45a ($0, \mathrm{C}_{\mathrm{s}}$)

(b)

Fig. S1 (a) Low lying isomers of $\mathrm{Pt}_{\mathrm{N}}(\mathrm{N}=41 \sim 46)$ clusters. For one particular size N, Na is the GM and Nb is the second lowest minimum. The energy relative to the GM and the symmetry are listed in the brackets. Deep blue: Shell Pt atoms; Grey: core Pt atoms. (b) The relative energies of $\mathrm{Pt}_{\mathrm{N}}(\mathrm{N}=12 \sim 46)$ clusters calculated with two different DFT functionals, PBE and PW91. According to the fitted relation between E and N, we arrive at $E_{0}=2.13431-5.61731$ $N^{1 / 3}+1.58801 N^{2 / 3}-0.162408 N$ for PBE, and $E_{0}=1.93275-5.39152 N^{1 / 3}+1.50598 N^{2 / 3}-$ 0.152585 N for PW91. Two DFT functionals yield basically the same conclusion for the magic number size for these Pt clusters.

2. The stability of the subsurface H atoms in Pt cluster

Fig. S2 Three different structures with one subsurface H in the $\mathrm{O}_{\mathrm{h}} \mathrm{Pt}_{44}$ cluster and the corresponding adsorption free energy ($\Delta \mathrm{G}_{\mathrm{ad}}$) of the subsuface H (in brackets). Deep blue: Shell Pt atoms; Grey: core Pt atoms, White: H atoms.

During the SSW-DFT global search of $\mathrm{Pt}_{44} \mathrm{H}_{\mathrm{x}}$ clusters, we found that the minima contains the subsurface H atoms are generally not stable and will not be retained during the GCMC evolution. No subsurface H atoms are present for the GM of $\mathrm{Pt}_{44} \mathrm{H}_{x}$, including $\mathrm{Pt}_{44} \mathrm{H}_{80}$. This is an very interesting phenomena, indicating the subsurface H is not stable in Pt nanoparticles, which renders a long-term stability of Pt nanoparticle. To provide better understanding into this issue, we have compared the adsorption free energy $\left(\Delta G_{a d}\right)$ of one subsuface H in the $\mathrm{O}_{\mathrm{h}} \mathrm{Pt}_{44}$ cluster. The H at three different subsurface sites are considered. As shown in Fig. S2, the value of $\Delta \mathrm{G}_{\mathrm{ad}}$ with respect to the gas phase H_{2} (standard state) are all positive for three situations. At the most stable tetrahedral subsurface site (Fig. S2 C), $\Delta \mathrm{G}_{\mathrm{ad}}$ is already +0.68 eV . This result supports the fact that the Pt - Pt interaction is much stronger than the $\mathrm{Pt}-\mathrm{H}$ interaction, and since the presence of subsurface H must weaken the Pt -Pt interaction, the H does not prefer the subsurface positions in Pt cluster. On the other hand, $\Delta \mathrm{G}_{\mathrm{ad}}$ for the first H on the surface of Pt_{44} cluster is 0.37 eV (at an edge site). Comparing $\Delta \mathrm{G}_{\mathrm{ad}}$ of H on the surface and at the subsurface, the energy difference is more than 1 eV , which suggests that thermodynamically it is not possible for the diffusion of H atoms into Pt cluster.

References:

[1] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.-Condes. Matter 2002, 14, 2745-2779.
[2] J. Junquera, O. Paz, D. Sanchez-Portal, E. Artacho, Physical Review B 2001, 64.
[3] N. Troullier, J. L. Martins, Physical Review B 1991, 43, 1993-2006.
[4] J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters 1996, 77, 3865-3868.
[5] H. F. Wang, Z. P. Liu, J. Am. Chem. Soc. 2008, 130, 10996-11004.
[6] C. Shang, Z. P. Liu, J. Chem. Theory Comput. 2010, 6, 1136-1144.
[7] G. Kresse, J. Hafner, J Phys-condens Mater 1994, 6, 8245-8257.
[8] P. E. Blochl, Phys Rev B 1994, 50, 17953-17979.
[9] G. Kresse, D. Joubert, Phys Rev B 1999, 59, 1758-1775.
[10] G. Kresse, J. Furthmuller, Comp Mater Sci 1996, 6, 15-50.
[11] J. P. Perdew, Y. Wang, Phys Rev B 1992, 45, 13244-13249.
[12] C. Shang, Z. P. Liu, J. Chem. Theory Comput. 2013, 9, 1838-1845.
[13] X. J. Zhang, C. Shang, Z. P. Liu, J. Chem. Theory Comput. 2013, 9, 3252-3260.
[14] H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, L. S. Wang, Nat. Chem. 2014, 6, 727731.
[15] D. R.LIDE, 84th ed., CRC press, 2003-2004.
[16] L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G. Ceder, J. Am. Chem. Soc. 2010, 132, 596-600.
[17] L. Li, A. H. Larsen, N. A. Romero, V. A. Morozov, C. Glinsvad, F. Abild-Pedersen, J. Greeley, K. W. Jacobsen, J. K. Norskov, J. Phys. Chem. Lett. 2013, 4, 222-226.
[18] T. Jacob, Fuel Cells 2006, 6, 159-181.
[19] E. Apra, F. Baletto, R. Ferrando, A. Fortunelli, Phys. Rev. Lett. 2004, 93.
[20] S. F. Li, X. J. Zhao, X. S. Xu, Y. F. Gao, Z. Y. Zhang, Phys. Rev. Lett. 2013, 111.
[21] V. Kumar, Y. Kawazoe, Physical Review B 2008, 77.
[22] X. L. Wang, D. X. Tian, Comput. Mater. Sci. 2009, 46, 239-244.

3. HER on $\left\{\mathbf{1 1 1 \}}\right.$ facets of $\mathbf{P t}_{44} \mathbf{H}_{\mathbf{8 0}}$

Fig. S3. The optimized structures for the transition state of H-H coupling on $\{111\}$ facets of $\mathrm{Pt}_{44} \mathrm{H}_{80}$ (site F1, shown in Figure 3a). The color scheme as those described in Figure 2 and Figure 3.

Pt			
Pt			
Pt	2.780918	4.003260	-2.677956
Pt	-2.944262	-4.018862	2.743140
Pt	3.809291	-0.046231	4.086782
Pt	-3.970939	0.026635	-4.022587
Pt	2.795694	-3.949062	-2.762136
Pt	-2.956763	3.932736	2.827626
Pt	0.496794	2.732631	-3.241176
Pt	-0.659565	-2.749763	3.303721
Pt	2.879290	1.333273	-2.797734
Pt	3.236861	2.709065	-0.383344
Pt	0.854319	4.109534	-0.827308
Pt	-3.043892	-1.348476	2.863574
Pt	-3.399570	-2.722685	0.450523
Pt	-1.016342	-4.126280	0.892396
Pt	3.574123	1.379462	1.837221
Pt	3.576681	-1.421274	1.806877
Pt	1.556611	-1.445380	3.745651
Pt	1.553251	1.354358	3.775449
Pt	-3.736434	-1.394467	-1.770091
Pt	-3.739757	1.405161	-1.742930
Pt	-1.719461	1.427340	-3.682087
Pt	-1.715354	-1.373247	-3.709406
Pt	0.505638	-2.678212	-3.296029
Pt	0.867602	-4.102985	-0.914367
Pt	3.244452	-2.702804	-0.441300
Pt	2.884325	-1.277288	-2.825795
Pt	-0.667273	2.660681	3.362091
Pt	-1.028629	4.085893	0.979798
Pt	-3.406101	2.688403	0.504715
Pt	-3.047544	1.261848	2.890941
Pt	1.411926	-3.065190	1.551577
Pt	0.625409	0.031178	-3.623884
Pt	-0.788543	-0.048600	3.687894
Pt	-1.564000	-3.034075	-1.548549
Pt	1.402876	3.019800	1.616591
Pt	-1.572722	3.047400	-1.487722
Pt	-3.760892	-0.018505	0.588061
Pt	3.593203	0.004963	-0.521713
Pt	-1.060359	-1.378836	0.959341
	1.246508	-0.020802	1.418096

Pt	-1.064584	1.338689	0.988166
Pt	-1.410008	0.004980	-1.352863
Pt	0.896390	1.363562	-0.893555
Pt	0.900810	-1.354779	-0.922591

H	6.190823	-3.889182	0.152327
H	6.165477	4.180152	-0.017523
H	2.277212	-3.904047	1.302662
H	3.963031	4.430973	0.100895
H	1.026902	-3.922411	5.265644
H	4.009025	-0.829898	5.383632
H	4.121130	1.108846	5.303156
H	4.281723	2.336099	3.178936
H	2.303481	-3.799735	3.456043
H	2.105102	-3.988358	1.201311
H	2.230170	-1.995318	5.146050
H	4.214141	-2.036137	3.260251
H	- ${ }^{-}$	-3.858626	3.423609
H	4.302719	-1.983103	1.291184
H	2.164089	-2.086967	3.328599
H	- ${ }^{-}$	-2.147154	5.119330
H	-	0.136860	5.184613
H	6.253612	-1.918563	0.063404
H	4.251468	-0.139495	3.243796
H	2.252842-	-3.903989	-1.170413
H	- ${ }^{-}$	-4.023785	-1.034528
H	0.141009	-3.862749	-3.275481
H	4.374881	-3.809080	-1.149280

H	4.344265	-3.806442	1.402422
H	2.392798	-3.798535	-3.269907
H	2.125691	-3.985294	-1.021055
H	0.051977	-4.017856	1.181919
H	0.158870	4.149915	3.430457
H	2.360883	4.090794	3.404864
H	0.021459	4.296039	1.163263
H	2.226102	4.198488	1.333620
H	0.216719	4.112122	-3.304862
H	4.362014	4.095085	1.287910
H	2.307158	4.047945	-3.359686
H	2.111781	4.249047	-1.087299
H	2.240086	4.189423	-1.155376
H	4.329817	4.073976	-1.288183
H	0.034929	4.293997	-1.066544
H	2.124938	4.269781	1.140618
H	2.366877	-0.124164	5.110859
H	2.268842	0.421649	5.152253
H	0.194564	2.421451	5.135135
H	2.336372	2.297858	5.108490
H	0.187263	-2.164101	-4.985695
H	2.271812	-0.183338	-5.029061
H	2.389774	0.402704	-4.964362
H	0.309618	2.389536	-4.998013
H	2.225464	2.224684	-5.036894
H	0.059734	0.111996	-5.045261
H	2.354623	-2.000822	-4.954644
H	6.059287	-2.032152	-1.094835
H	6.025690	-2.020536	1.382705
H	6.051585	0.432789	-1.108409
H	6.017392	0.445693	1.382084
H	-	2.311845	-1.251319

	6.002347		
H	6.066879	-0.087948	1.253905
H	6.282920	1.131330	3.063940
H	6.030283	-0.144245	-1.247821
H	4.205396	2.289082	-3.157904
H	4.303843	-2.049860	-3.023111
H	6.030673	2.328542	1.248810
H	4.296559	0.431375	-3.056589
H	2.156918	2.348611	-3.194399
H	4.224665	2.339278	-1.111911
H	4.242546	-2.059482	-1.153139
H	4.220328	-0.185988	-3.159184
H	2.095625	-2.103102	-3.235783
H	2.077511	2.371382	3.379549
H	4.200608	2.343761	1.326102
H	4.208160	0.440453	3.295898
H	4.144113	-0.834310	-5.154475
H	6.313004	-0.802082	-2.891554
H	6.232078	-0.785585	3.174631
H	- 4.006639	1.058739	-5.274810
H	- 6.228460	1.063256	-3.045607
H	1.116346	4.201285	5.259078
H	1.026566	4.158398	-5.163096
H	1.148678	-3.921852	-5.100902
H	4.004915	-4.124253	0.060313
H	6.211041	2.249596	0.125069
Pt	5.006701	3.082467	0.002507
Pt	2.948499	-0.834499	0.103348
Pt	5.058725	1.098084	2.039467

Pt	5.041761	-0.893475	0.033212
Pt		1.062723	-2.003769
	5.019777		
Pt	2.996654	1.176574	-1.904268
Pt	2.926025	3.224801	0.097035
Pt	2.945283	1.185480	2.106394
Pt	2954254	-2.930282	0.052617
Pt		-2.894552	2.084075
	0.962154	-2.894552	2.084075
Pt	1.032732	-3.129797	0.081660
Pt	$0.91912{ }^{-}$	-2.903928	-1.960873
Pt	-	3.10858	
	1.080276	3.108589	4.091983
Pt	0.926561	1.153815	4.144572
Pt	${ }^{-}$	-0.871186	4.125271
	1.019413		
Pt	${ }^{-}$	1.081689	4.108672
	3.059493		
Pt	0	-0.895522	-4.007978
Pt	-	1.029314	-4.047709
	2.982168		
Pt	-	3.065593	-3.995674
	0.999446		
Pt	1.020283	1.126043	-3.984964
Pt	5.019535	1.201097	0.121368
Pt	0.980387	-0.843081	2.058221
Pt		3.113014	2.026090
	3.023330		
Pt	1.028589	-0.852715	-1.894424
Pt	0.964538	1.203134	0.078498
Pt	0.904569	3.182501	2.099334
P	-	-0.927177	0.060175
	0.974525		
Pt	${ }^{-}$	-0.915242	-1.966849
	2.964686		
Pt		1.104027	-1.928462
	0.985753		
P		3.400886	0.043084
Pt	-	1.112448	0.035245

2.944978

Pt	-	3.081120	-1.981855
	2.984259		
Pt	-	1.127384	2.037899
Pt	0.947709	3.164452	-1.955273
Pt	-	-0.893892	2.052318
Pt	3.002359		
Pt	5.027404	-2.796419	0.132685
Pt	5.077847	-0.797308	-1.880122
Pt	2.976684	-0.785272	2.132961
Pt	0.996959	-0.785444	4.164857
Pt	1.096003	-2.820273	4.106624
Pt	3.084057	-0.795347	-3.939329
Pt	2.986916	-2.822008	-3.958659
Pt	3.039236	-2.824858	2.093066
		-1.884168	

